
RISCV-BOOM Documentation

Chris Celio, Jerry Zhao, Abraham Gonzalez, Ben Korpan

Apr 08, 2021

Introduction:

1 Useful Links 3

2 Quick-start 5

3 Table of Contents 7
3.1 The Berkeley Out-of-Order Machine (BOOM) . 7
3.2 The BOOM Pipeline . 8
3.3 The Chisel Hardware Construction Language . 11
3.4 The RISC-V ISA . 11
3.5 Rocket Chip SoC Generator . 11
3.6 Instruction Fetch . 12
3.7 Branch Prediction . 14
3.8 The Decode Stage . 23
3.9 The Rename Stage . 24
3.10 The Reorder Buffer (ROB) and the Dispatch Stage . 27
3.11 The Issue Unit . 30
3.12 The Register Files and Bypass Network . 32
3.13 The Execute Pipeline . 33
3.14 The Load/Store Unit (LSU) . 40
3.15 The Memory System . 43
3.16 Parameterization . 43
3.17 The BOOM Development Ecosystem . 46
3.18 Debugging . 48
3.19 Micro-architectural Event Tracking . 48
3.20 Verification . 50
3.21 Physical Realization . 50
3.22 Future Work . 52
3.23 Frequently Asked Questions . 52
3.24 Terminology . 53

4 Indices and tables 55

Index 57

i

ii

RISCV-BOOM Documentation

The Berkeley Out-of-Order Machine (BOOM) is a synthesizable and parameterizable open-source RISC-V out-of-
order core written in the Chisel hardware construction language. The goal of this document is to describe the design
and implementation of the core as well as provide other helpful information to use the core.

Introduction: 1

riscv.org
chisel-lang.org

RISCV-BOOM Documentation

2 Introduction:

CHAPTER 1

Useful Links

The BOOM source code can be found here: https://github.com/riscv-boom/riscv-boom.

The main supported mechanism to use the core is to use the Chipyard framework: https://github.com/ucb-bar/chipyard.

The BOOM website can be found here: https://boom-core.org.

The BOOM mailing list can be found here: https://groups.google.com/forum/#!forum/riscv-boom.

3

https://github.com/riscv-boom/riscv-boom
https://github.com/ucb-bar/chipyard
https://boom-core.org
https://groups.google.com/forum/#!forum/riscv-boom

RISCV-BOOM Documentation

4 Chapter 1. Useful Links

CHAPTER 2

Quick-start

The best way to get started with the BOOM core is to use the Chipyard project template. There you will find the main
steps to setup your environment, build, and run the BOOM core on a C++ emulator. Chipyard also provides supported
flows for pushing a BOOM-based SoC through both the FireSim FPGA simulation flow and the HAMMER ASIC
flow. Here is a selected set of steps from Chipyard’s documentation:

Listing 2.1: Quick-Start Code

Download the template and setup environment
git clone https://github.com/ucb-bar/chipyard.git
cd chipyard
./scripts/init-submodules-no-riscv-tools.sh

build the toolchain
./scripts/build-toolchains.sh riscv-tools

add RISCV to env, update PATH and LD_LIBRARY_PATH env vars
note: env.sh generated by build-toolchains.sh
source env.sh

cd sims/verilator
make CONFIG=LargeBoomConfig

Note: Listing 2.1 assumes you don’t have riscv-tools toolchain installed. It will pull and build the toolchain for you.

5

https://github.com/ucb-bar/chipyard
https://chipyard.readthedocs.io/en/latest/

RISCV-BOOM Documentation

6 Chapter 2. Quick-start

CHAPTER 3

Table of Contents

3.1 The Berkeley Out-of-Order Machine (BOOM)

Fig. 3.1: Detailed BOOM Pipeline. *’s denote where the core can be configured.

7

RISCV-BOOM Documentation

The Berkeley Out-of-Order Machine (BOOM) is heavily inspired by the MIPS R100001 and the Alpha 212642

out–of–order processors. Like the MIPS R10000 and the Alpha 21264, BOOM is a unified physical register file
design (also known as “explicit register renaming”).

BOOM implements the open-source RISC-V ISA and utilizes the Chisel hardware construction language to construct
generator for the core. A generator can be thought of a generialized RTL design. A standard RTL design can be
viewed as a single instance of a generator design. Thus, BOOM is a family of out-of-order designs rather than a single
instance of a core. Additionally, to build an SoC with a BOOM core, BOOM utilizes the Rocket Chip SoC generator
as a library to reuse different micro-architecture structures (TLBs, PTWs, etc).

3.2 The BOOM Pipeline

Fig. 3.2: Simplified BOOM Pipeline with Stages

3.2.1 Overview

Conceptually, BOOM is broken up into 10 stages: Fetch, Decode, Register Rename, Dispatch, Issue, Register
Read, Execute, Memory, Writeback and Commit. However, many of those stages are combined in the current
implementation, yielding seven stages: Fetch, Decode/Rename, Rename/Dispatch, Issue/RegisterRead, Execute,
Memory and Writeback (Commit occurs asynchronously, so it is not counted as part of the “pipeline”). Fig. 3.2
shows a simplified BOOM pipeline that has all of the pipeline stages listed.

3.2.2 Stages

Fetch

Instructions are fetched from instruction memory and pushed into a FIFO queue, known as the Fetch Buffer . Branch
prediction also occurs in this stage, redirecting the fetched instructions as necessary.1

Decode

Decode pulls instructions out of the Fetch Buffer and generates the appropriate Micro-Op(s) (UOPs) to place into the
pipeline.2

Rename

The ISA, or “logical”, register specifiers (e.g. x0-x31) are then renamed into “physical” register specifiers.

Dispatch

The UOP is then dispatched, or written, into a set of Issue Queue s.

1 Yeager, Kenneth C. “The MIPS R10000 superscalar microprocessor.” IEEE micro 16.2 (1996): 28-41.
2 Kessler, Richard E. “The alpha 21264 microprocessor.” IEEE micro 19.2 (1999): 24-36.
1 While the Fetch Buffer is N-entries deep, it can instantly read out the first instruction on the front of the FIFO. Put another way, instructions

don’t need to spend N cycles moving their way through the Fetch Buffer if there are no instructions in front of them.
2 Because RISC-V is a RISC ISA, currently all instructions generate only a single Micro-Op (UOP) . More details on how store UOPs are

handled can be found in The Memory System and the Data-cache Shim.

8 Chapter 3. Table of Contents

riscv.org
https://github.com/chipsalliance/rocket-chip

RISCV-BOOM Documentation

Issue

UOPs sitting in a Issue Queue wait until all of their operands are ready and are then issued.3 This is the beginning of
the out–of–order piece of the pipeline.

Register Read

Issued UOPs s first read their register operands from the unified Physical Register File (or from the Bypass Net-
work). . .

Execute

. . . and then enter the Execute stage where the functional units reside. Issued memory operations perform their address
calculations in the Execute stage, and then store the calculated addresses in the Load/Store Unit which resides in the
Memory stage.

Memory

The Load/Store Unit consists of three queues: a Load Address Queue (LAQ), a Store Address Queue (SAQ), and
a Store Data Queue (SDQ). Loads are fired to memory when their address is present in the LAQ. Stores are fired to
memory at Commit time (and naturally, stores cannot be committed until both their address and data have been placed
in the SAQ and SDQ).

Writeback

ALU operations and load operations are written back to the Physical Register File.

Commit

The Reorder Buffer (ROB), tracks the status of each instruction in the pipeline. When the head of the ROB is
not-busy, the ROB commits the instruction. For stores, the ROB signals to the store at the head of the Store Queue
(SAQ/SDQ) that it can now write its data to memory.

3.2.3 Branch Support

BOOM supports full branch speculation and branch prediction. Each instruction, no matter where it is in the pipeline,
is accompanied by a Branch Tag that marks which branches the instruction is “speculated under”. A mispredicted
branch requires killing all instructions that depended on that branch. When a branch instructions passes through
Rename, copies of the Register Rename Table and the Free List are made. On a mispredict, the saved processor
state is restored.

3.2.4 Detailed BOOM Pipeline

Although Fig. 3.2 shows a simplified BOOM pipeline, BOOM supports RV64GC and the privileged ISA which in-
cludes single-precision and double-precision floating point, atomics support, and page-based virtual memory. A more
detailed diagram is shown below in Fig. 3.3.

3 More precisely, Micro-Ops (UOPs) that are ready assert their request, and the issue scheduler within the Issue Queue chooses which UOPs to
issue that cycle.

3.2. The BOOM Pipeline 9

RISCV-BOOM Documentation

Fig. 3.3: Detailed BOOM Pipeline. *’s denote where the core can be configured.
10 Chapter 3. Table of Contents

RISCV-BOOM Documentation

3.3 The Chisel Hardware Construction Language

BOOM is implemented in the Chisel hardware construction language. Chisel is an embedded DSL within Scala
that supports advanced hardware design using highly parameterized generators. It is used within multiple projects in
academia (e.g. Rocket Chip, FireSim, etc) as well as in industry (Google Edge TPU).

More information about can be found at http://chisel-lang.org.

3.4 The RISC-V ISA

The RISC-V ISA is a widely adopted open-source ISA suited for a variety of applications. It includes a base ISA as
well as multiple optional extensions that implement different features. BOOM implements the RV64GC variant of
the RISC-V ISA (otherwise known as IMAFDC)1. This includes the MAFDC extensions and the privileged specifi-
cation (multiply/divide, AMOs, load-reserve/store-conditional, single-precision and double-precision IEEE 754-2008
floating point).

RISC-V provides the following features which make it easy to target with high-performance designs:

• Relaxed memory model

– This greatly simplifies the Load/Store Unit (LSU), which does not need to have loads snoop other loads
nor does coherence traffic need to snoop the LSU, as required by sequential consistency.

• Accrued Floating Point (FP) exception flags

– The FP status register does not need to be renamed, nor can FP instructions throw exceptions themselves.

• No integer side-effects

– All integer ALU operations exhibit no side-effects, other than the writing of the destination register. This
prevents the need to rename additional condition state.

• No cmov or predication

– Although predication can lower the branch predictor complexity of small designs, it greatly complicates
out-of-order pipelines, including the addition of a third read port for integer operations.

• No implicit register specifiers

– Even JAL requires specifying an explicit register. This simplifies rename logic, which prevents either the
need to know the instruction first before accessing the rename tables, or it prevents adding more ports to
remove the instruction decode off the critical path.

• Registers rs1, rs2, rs3, rd are always in the same place

– This allows decode and rename to proceed in parallel.

More information about the RISC-V ISA can be found at http://riscv.org.

3.5 Rocket Chip SoC Generator

As BOOM is just a core, an entire SoC infrastructure must be provided. BOOM was developed to use the open-source
Rocket Chip SoC generator. The Rocket Chip generator can instantiate a wide range of SoC designs, including
cache-coherent multi-tile designs, cores with and without accelerators, and chips with or without a last-level shared
cache. It comes bundled with a 5-stage in-order core, called Rocket, by default. BOOM uses the Rocket Chip
infrastructure to instantiate it’s core/tile complex (tile is a core, L1D/I$, and PTW) instead of a Rocket tile.

1 Currently, BOOM does not implement the proposed “V” vector extension.

3.3. The Chisel Hardware Construction Language 11

chisel-lang.org
https://github.com/chipsalliance/rocket-chip
https://fires.im/
https://www.youtube.com/watch?v=x85342Cny8c
http://chisel-lang.org
riscv.org
http://riscv.org
https://github.com/chipsalliance/rocket-chip

RISCV-BOOM Documentation

Fig. 3.4: A single-core “BOOM-chip”, with no L2 last-level cache

To get more information, please visit the Chipyard Rocket Chip documentation.

3.5.1 The Rocket Core - a Library of Processor Components!

From BOOM’s point of view, the Rocket core can be thought of as a “Library of Processor Components.” There are a
number of modules created for Rocket that are also used by BOOM - the functional units, the caches, the translation
look-aside buffers (TLBs), the page table walker (PTW), and more. Throughout this document you will find references
to these Rocket components and descriptions on how they fit into BOOM.

To get more information about the Rocket core, please visit the Chipyard Rocket Core documentation.

Note: Both Chipyard links point to the dev documentation of Chipyard to get the most recent documentation changes.

3.6 Instruction Fetch

Fig. 3.5: The BOOM Front-end

BOOM instantiates its own Front-end , similar to how the Rocket core(s) instantiates its own Front-end . This Front-
end fetches instructions and makes predictions throughout the Fetch stage to redirect the instruction stream in multiple
fetch cycles (F0, F1. . .). If a misprediction is detected in BOOM’s Back-end (execution pipeline), or one of BOOM’s
own predictors wants to redirect the pipeline in a different direction, a request is sent to the Front-end and it begins
fetching along a new instruction path. See Branch Prediction for more information on how branch prediction fits into
the Fetch Stage’s pipeline.

12 Chapter 3. Table of Contents

https://chipyard.readthedocs.io/en/dev/Generators/Rocket-Chip.html
https://chipyard.readthedocs.io/en/dev/Generators/Rocket.html

RISCV-BOOM Documentation

Since superscalar fetch is supported, the Front-end retrieves a Fetch Packet of instructions from instruction memory
and puts them into the Fetch Buffer to give to the rest of the pipeline. The Fetch Packet also contains other meta-data,
such as a valid mask (which instructions in the packet are valid?) and some branch prediction information that is used
later in the pipeline. Additionally, the PC and branch prediction information is stored inside of the Fetch Target Queue
which holds this information for the rest of the pipeline.

3.6.1 The Rocket Core I-Cache

BOOM instantiates the i-cache taken from the Rocket processor source code. The i-cache is a virtually indexed,
physically tagged set-associative cache.

To save power, the i-cache reads out a fixed number of bytes (aligned) and stores the instruction bits into a register.
Further instruction fetches can be managed by this register. The i-cache is only fired up again once the fetch register
has been exhausted (or a branch prediction directs the PC elsewhere).

The i-cache does not (currently) support fetching across cache-lines, nor does it support fetching unaligned relative to
the superscalar fetch address.1

The i-cache does not (currently) support hit-under-miss. If an i-cache miss occurs, the i-cache will not accept any
further requests until the miss has been handled. This is less than ideal for scenarios in which the pipeline discovers a
branch mispredict and would like to redirect the i-cache to start fetching along the correct path.

3.6.2 Fetching Compressed Instructions

This section describes how the RISC-V Compressed ISA extension was implemented in BOOM. The Compressed
ISA Extension, or RVC enables smaller, 16 bit encodings of common instructions to decrease the static and dynamic
code size. “RVC” comes with a number of features that are of particular interest to micro-architects:

• 32b instructions have no alignment requirement, and may start on a half-word boundary.

• All 16b instructions map directly into a longer 32b instruction.

During the Front-end stages, BOOM retrieves a Fetch Packet from the i-cache, quickly decodes the instructions for
branch prediction, and pushes the Fetch Packet into the Fetch Buffer. However, doing this brings up a particular set of
issues to manage:

• Increased decoding complexity (e.g., operands can now move around).

• Finding where the instruction begins.

• Removing +4 assumptions throughout the code base, particularly with branch handling.

• Unaligned instructions, in particular, running off cache lines and virtual pages.

The last point requires some additional “statefulness” in the Fetch Unit , as fetching all of the pieces of an instruction
may take multiple cycles.

The following describes the implementation of RVC in BOOM by describing the lifetime of a instruction.

• The Front-end returns Fetch Packet s of fetchWidth *16 bits wide. This was supported inherently in the BOOM
Front-end .

• Maintain statefulness in F3, in the cycle where Fetch Packet s are dequeued from the i-cache response queue
and enqueued onto the Fetch Buffer .

1 This constraint is due to the fact that a cache-line is not stored in a single row of the memory bank, but rather is striped across a single bank
to match the refill size coming from the uncore. Fetching unaligned would require modification of the underlying implementation, such as banking
the i-cache such that consecutive chunks of a cache-line could be accessed simultaneously.

3.6. Instruction Fetch 13

https://riscv.org/specifications/

RISCV-BOOM Documentation

• F3 tracks the trailing 16b, PC, and instruction boundaries of the last Fetch Packet . These bits are combined with
the current Fetch Packet and expanded to fetchWidth *32 bits for enqueuing onto the Fetch Buffer . Predecode
determines the start address of every instruction in this Fetch Packet and masks the Fetch Packet for the Fetch
Buffer .

• The Fetch Buffer now compacts away invalid, or misaligned instructions when storing to its memory.

The following section describes miscellaneous implementation details.

• A challenging problem is dealing with instructions that cross a Fetch Boundary. We track these instructions as
belonging to the Fetch Packet that contains their higher-order 16 bits. We have to be careful when determining
the PC of these instructions, by tracking all instructions which were initially misaligned across a Fetch Boundary
.

• The pipeline must also track whether an instruction was originally 16b or 32b, for calculating PC+4 or PC+2.

3.6.3 The Fetch Buffer

Fetch Packet s coming from the i-cache are placed into a Fetch Buffer . The Fetch Buffer helps to decouple the
instruction fetch Front-end from the execution pipeline in the Back-end .

The Fetch Buffer is parameterizable. The number of entries can be changed and whether the buffer is implemented as
a “flow-through” queue2 or not can be toggled.

3.6.4 The Fetch Target Queue

The Fetch Target Queue is a queue that holds the PC received from the i-cache and the branch prediction info associated
with that address. It holds this information for the pipeline to reference during the executions of its Micro-Ops (UOPs)
. It is dequeued by the ROB once an instruction is committed and is updated during pipeline redirection/mispeculation.

3.7 Branch Prediction

Fig. 3.6: The BOOM Front-end

This chapter discusses how BOOM predicts branches and then resolves these predictions.

BOOM uses two levels of branch prediction - a fast Next-Line Predictor (NLP) and a slower but more complex Backing
Predictor (BPD)1. In this case, the NLP is a Branch Target Buffer and the BPD is a more complicated structure like a
GShare predictor.

2 A flow-through queue allows entries being enqueued to be immediately dequeued if the queue is empty and the consumer is requesting (the
packet “flows through” instantly).

1 Unfortunately, the terminology in the literature gets a bit muddled here in what to call different types and levels of branch predictor. Literature
has references to different structures; “micro-BTB” versus “BTB”, “NLP” versus “BHT”, and “cache-line predictor” versus “overriding predictor”.
Although the Rocket core calls its own predictor the “BTB”, BOOM refers to it as the Next-Line Predictor (NLP) , to denote that it is a combinational
predictor that provides single-cycle predictions for fetching “the next line”, and the Rocket BTB encompasses far more complexity than just a
“branch target buffer” structure. Likewise, the name Backing Predictor (BPD) was chosen to avoid being overly descriptive of the internal design
(is it a simple BHT? Is it tagged? Does it override the NLP ?) while being accurate. If you have recommendations for better names, feel free to
reach out!

14 Chapter 3. Table of Contents

RISCV-BOOM Documentation

3.7.1 The Next-Line Predictor (NLP)

BOOM core’s Front-end fetches instructions and predicts every cycle where to fetch the next instructions. If a mispre-
diction is detected in BOOM’s Back-end, or BOOM’s own Backing Predictor (BPD) wants to redirect the pipeline in
a different direction, a request is sent to the Front-end and it begins fetching along a new instruction path.

The Next-Line Predictor (NLP) takes in the current PC being used to fetch instructions (the Fetch PC) and predicts
combinationally where the next instructions should be fetched for the next cycle. If predicted correctly, there are no
pipeline bubbles.

The NLP is an amalgamation of a fully-associative Branch Target Buffer (BTB), Bi-Modal Table (BIM) and a Return
Address Stack (RAS) which work together to make a fast, but reasonably accurate prediction.

NLP Predictions

The Fetch PC first performs a tag match to find a uniquely matching BTB entry. If a hit occurs, the BTB entry will
make a prediction in concert with the RAS as to whether there is a branch, jump, or return found in the Fetch Packet
and which instruction in the Fetch Packet is to blame. The BIM is used to determine if that prediction made was a
branch taken or not taken. The BTB entry also contains a predicted PC target, which is used as the Fetch PC on the
next cycle.

Fig. 3.7: The Next-Line Predictor (NLP) Unit. The Fetch PC scans the BTB’s “PC tags” for a match. If a match is
found (and the entry is valid), the Bi-Modal Table (BIM) and RAS are consulted for the final verdict. If the entry is a
“ret” (return instruction), then the target comes from the RAS. If the entry is a unconditional “jmp” (jump instruction),
then the BIM is not consulted. The “bidx”, or branch index, marks which instruction in a superscalar Fetch Packet is
the cause of the control flow prediction. This is necessary to mask off the other instructions in the Fetch Packet that
come over the taken branch

The hysteresis bits in the BIM are only used on a BTB entry hit and if the predicting instruction is a branch.

If the BTB entry contains a return instruction, the RAS stack is used to provide the predicted return PC as the next
Fetch PC. The actual RAS management (of when to or the stack) is governed externally.

For area-efficiency, the high-order bits of the PC tags and PC targets are stored in a compressed file.

3.7. Branch Prediction 15

RISCV-BOOM Documentation

NLP Updates

Each branch passed down the pipeline remembers not only its own PC, but also its Fetch PC (the PC of the head
instruction of its Fetch Packet).2

BTB Updates

The BTB is updated only when the Front-end is redirected to take a branch or jump by either the Branch Unit (in the
Execute stage) or the BPD (later in the Fetch stages).3

If there is no BTB entry corresponding to the taken branch or jump, an new entry is allocated for it.

RAS Updates

The RAS is updated during the Fetch stages once the instructions in the Fetch Packet have been decoded. If the taken
instruction is a call4 , the return address is pushed onto the RAS. If the taken instruction is a return, then the RAS is
popped.

Superscalar Predictions

When the NLP makes a prediction, it is actually using the BTB to tag match against the predicted branch’s Fetch PC,
and not the PC of the branch itself. The NLP must predict across the entire Fetch Packet which of the many possible
branches will be the dominating branch that redirects the PC. For this reason, we use a given branch’s Fetch PC rather
than its own PC in the BTB tag match.5

3.7.2 The Backing Predictor (BPD)

When the Next-Line Predictor (NLP) is predicting well, the processor’s Back-end is provided an unbroken stream of
instructions to execute. The NLP is able to provide fast, single-cycle predictions by being expensive (in terms of both
area and power), very small (only a few dozen branches can be remembered), and very simple (the Bi-Modal Table
(BIM) hysteresis bits are not able to learn very complicated or long history patterns).

To capture more branches and more complicated branching behaviors, BOOM provides support for a Backing Predic-
tor (BPD).

The BPD ‘s goal is to provide very high accuracy in a (hopefully) dense area. The BPD only makes taken/not-taken
predictions; it therefore relies on some other agent to provide information on what instructions are branches and what
their targets are. The BPD can either use the BTB for this information or it can wait and decode the instructions
themselves once they have been fetched from the i-cache. This saves on needing to store the PC tags and branch
targets within the BPD7.

2 In reality, only the very lowest bits must be saved, as the higher-order bits will be the same.
3 The BTB relies on a little cleverness - when redirecting the PC on a misprediction, this new Fetch PC is the same as the update PC that

needs to be written into a new BTB entry’s target PC field. This “coincidence” allows the PC compression table to use a single search port - it is
simultaneously reading the table for the next prediction while also seeing if the new Update PC already has the proper high-order bits allocated for
it.

4 While RISC-V does not have a dedicated call instruction, it can be inferred by checking for a JAL or JALR instruction with a writeback
destination to x1 (aka, the return address register).

5 Each BTB entry corresponds to a single Fetch PC, but it is helping to predict across an entire Fetch Packet. However, the BTB entry can only
store meta-data and target-data on a single control-flow instruction. While there are certainly pathological cases that can harm performance with
this design, the assumption is that there is a correlation between which branch in a Fetch Packet is the dominating branch relative to the Fetch PC,
and - at least for narrow fetch designs - evaluations of this design has shown it is very complexity-friendly with no noticeable loss in performance.
Some other designs instead choose to provide a whole bank of BTBs for each possible instruction in the Fetch Packet .

7 It’s the PC Tag storage and Branch Target storage that makes the BTB within the Next-Line Predictor (NLP) so expensive.

16 Chapter 3. Table of Contents

RISCV-BOOM Documentation

The BPD is accessed throughout the Fetch stages and in parallel with the instruction cache access and BTB (see Fig.
3.8). This allows the BPD to be stored in sequential memory (i.e., SRAM instead of flip-flops). With some clever
architecting, the BPD can be stored in single-ported SRAM to achieve the density desired.

Fig. 3.8: The BOOM Front-end. Here you can see the BTB and Branch Predictor on the lower portion of the diagram.
The instructions returning from the instruction cache are quickly decoded; any branches that are predicted as taken
from the BTB or Backing Predictor (BPD) will redirect the Front-end from the F4 stage. Prediction snapshots and
metadata are stored in the Branch Rename Snapshots (for fixing the predictor after mispredictions) and the Fetch
Target Queue (FTQ) (for updating the predictors in the Commit stage).

Making Predictions

When making a prediction, the BPD must provide the following:

• is a prediction being made?

• a bit-vector of taken/not-taken predictions

As per the first bullet-point, the BPD may decide to not make a prediction. This may be because the predictor uses
tags to inform whether its prediction is valid or there may be a structural hazard that prevented a prediction from being
made.

The BPD provides a bit-vector of taken/not-taken predictions, the size of the bit-vector matching the Fetch Width of
the pipeline (one bit for each instruction in the Fetch Packet). A later Fetch stage will will decode the instructions
in the Fetch Packet , compute the branch targets, and decide in conjunction with the BPD ‘s prediction bit-vector if a
Front-end redirect should be made.

Jump and Jump-Register Instructions

The BPD makes predictions only on the direction (taken versus not-taken) of conditional branches. Non-conditional
“jumps” (JAL) and “jump-register” (JALR) instructions are handled separately from the BPD .8

The NLP learns any “taken” instruction’s PC and target PC - thus, the NLP is able to predict jumps and jump-register
instructions.

If the NLP does not make a prediction on a JAL instruction, the pipeline will redirect the Front-end in F4 (see Fig.
3.5).9

Jump-register instructions that were not predicted by the NLP will be sent down the pipeline with no prediction made.
As JALR instructions require reading the register file to deduce the jump target, there’s nothing that can be done if the
NLP does not make a prediction.

Updating the Backing Predictor

Generally speaking, the BPD is updated during the Commit stage. This prevents the BPD from being polluted by
wrong-path information.10 However, as the BPD makes use of global history, this history must be reset whenever the

8 JAL instructions jump to a PC+Immediate location, whereas JALR instructions jump to a PC+Register[rs1]+Immediate location.
9 Redirecting the Front-end in the F4 Stage for instructions is trivial, as the instruction can be decoded and its target can be known.

10 In the data-cache, it can be useful to fetch data from the wrong path - it is possible that future code executions may want to access the data.
Worst case, the cache’s effective capacity is reduced. But it can be quite dangerous to add wrong-path information to the Backing Predictor (BPD)
- it truly represents a code-path that is never exercised, so the information will never be useful in later code executions. Worst, aliasing is a problem
in branch predictors (at most partial tag checks are used) and wrong-path information can create deconstructive aliasing problems that worsens
prediction accuracy. Finally, bypassing of the inflight prediction information can occur, eliminating any penalty of not updating the predictor until
the Commit stage.

3.7. Branch Prediction 17

RISCV-BOOM Documentation

Front-end is redirected. Thus, the BPD must also be (partially) updated during Execute when a misprediction occurs
to reset any speculative updates that had occurred during the Fetch stages.

When making a prediction, the BPD passes to the pipeline a “response info packet”. This “info packet” is stored in
the Fetch Target Queue (FTQ) until commit time.11 Once all of the instructions corresponding to the “info packet”
is committed, the “info packet” is set to the BPD (along with the eventual outcome of the branches) and the BPD
is updated. The Fetch Target Queue (FTQ) for Predictions covers the FTQ , which handles the snapshot information
needed for update the predictor during Commit. Rename Snapshot State covers the Branch Rename Snapshots , which
handles the snapshot information needed to update the predictor during a misspeculation in the Execute stage.

Managing the Global History Register (GHR)

The Global History Register (GHR) is an important piece of a branch predictor. It contains the outcomes of the
previous N branches (where N is the size of the GHR).12

When fetching branch i, it is important that the direction of the previous i-N branches is available so an accurate
prediction can be made. Waiting until the Commit stage to update the GHR would be too late (dozens of branches
would be inflight and not reflected!). Therefore, the GHR must be updated speculatively, once the branch is fetched
and predicted.

If a misprediction occurs, the GHR must be reset and updated to reflect the actual history. This means that each branch
(more accurately, each Fetch Packet) must snapshot the GHR in case of a misprediction.13

There is one final wrinkle - exceptional pipeline behavior. While each branch contains a snapshot of the GHR , any
instruction can potential throw an exception that will cause a Front-end redirect. Such an event will cause the GHR
to become corrupted. For exceptions, this may seem acceptable - exceptions should be rare and the trap handlers will
cause a pollution of the GHR anyways (from the point of view of the user code). However, some exceptional events
include “pipeline replays” - events where an instruction causes a pipeline flush and the instruction is refetched and
re-executed.14 For this reason, a commit copy of the GHR is also maintained by the BPD and reset on any sort of
pipeline flush event.

The Fetch Target Queue (FTQ) for Predictions

The Reorder Buffer (see The Reorder Buffer (ROB) and the Dispatch Stage) maintains a record of all inflight instruc-
tions. Likewise, the FTQ maintains a record of all inflight branch predictions and PC information. These two structures
are decoupled as FTQ entries are incredibly expensive and not all ROB entries will contain a branch instruction. As
only roughly one in every six instructions is a branch, the FTQ can be made to have fewer entries than the ROB to
leverage additional savings.

Each FTQ entry corresponds to one Fetch cycle. For each prediction made, the branch predictor packs up data that it
will need later to perform an update. For example, a branch predictor will want to remember what index a prediction
came from so it can update the counters at that index later. This data is stored in the FTQ .

When the last instruction in a Fetch Packet is committed, the FTQ entry is deallocated and returned to the branch
predictor. Using the data stored in the FTQ entry, the branch predictor can perform any desired updates to its prediction
state.

11 These info packets are not stored in the ROB for two reasons - first, they correspond to Fetch Packet‘s, not instructions. Second, they are very
expensive and so it is reasonable to size the :term:‘Fetch Target Queue (FTQ) to be smaller than the ROB.

12 Actually, the direction of all conditional branches within a Fetch Packet are compressed (via an OR-reduction) into a single bit, but for this
section, it is easier to describe the history register in slightly inaccurate terms.

13 Notice that there is a delay between beginning to make a prediction in the F0 stage (when the global history is read) and redirecting the
Front-end in the F4 stage (when the global history is updated). This results in a “shadow” in which a branch beginning to make a prediction in
F0 will not see the branches (or their outcomes) that came a cycle (or two) earlier in the program (that are currently in F1/2/3 stages). It is vitally
important though that these “shadow branches” be reflected in the global history snapshot.

14 An example of a pipeline replay is a memory ordering failure in which a load executed before an older store it depends on and got the wrong
data. The only recovery requires flushing the entire pipeline and re-executing the load.

18 Chapter 3. Table of Contents

RISCV-BOOM Documentation

There are a number of reasons to update the branch predictor after Commit. It is crucial that the predictor only learns
correct information. In a data cache, memory fetched from a wrong path execution may eventually become useful
when later executions go to a different path. But for a branch predictor, wrong path updates encode information that
is pure pollution – it takes up useful entries by storing information that is not useful and will never be useful. Even if
later iterations do take a different path, the history that got it there will be different. And finally, while caches are fully
tagged, branch predictors use partial tags (if any) and thus suffer from deconstructive aliasing.

Of course, the latency between Fetch and Commit is inconvenient and can cause extra branch mispredictions to occur
if multiple loop iterations are inflight. However, the FTQ could be used to bypass branch predictions to mitigate this
issue. Currently, this bypass behavior is not supported in BOOM.

Rename Snapshot State

The FTQ holds branch predictor data that will be needed to update the branch predictor during Commit (for both
correct and incorrect predictions). However, there is additional state needed for when the branch predictor makes
an incorrect prediction and must be updated immediately. For example, if a misprediction occurs, the speculatively-
updated GHR must be reset to the correct value before the processor can begin fetching (and predicting) again.

This state can be very expensive but it can be deallocated once the branch is resolved in the Execute stage. Therefore,
the state is stored in parallel with the Branch Rename Snapshot s. During Decode and Rename, a Branch Tag is allo-
cated to each branch and a snapshot of the rename tables are made to facilitate single-cycle rollback if a misprediction
occurs. Like the branch tag and Rename Map Table snapshots, the corresponding Branch Rename Snapshot can be
deallocated once the branch is resolved by the Branch Unit in Execute.

Fig. 3.9: The Branch Predictor Pipeline. Although a simple diagram, this helps show the I/O within the Branch
Prediction Pipeline. The Front-end sends the “next PC” (shown as req) to the pipeline in the F0 stage. Within the
“Abstract Predictor”, hashing is managed by the “Abstract Predictor” wrapper. The “Abstract Predictor” then returns
a Backing Predictor (BPD) response or in other words a prediction for each instruction in the Fetch Packet .

The Abstract Branch Predictor Class

To facilitate exploring different global history-based BPD designs, an abstract “BrPredictor” class is provided. It
provides a standard interface into the BPD and the control logic for managing the global history register. This abstract
class can be found in Fig. 3.9 labeled “Abstract Predictor”. For a more detailed view of the predictor with an example
look at Fig. 3.12.

Global History

As discussed in Managing the Global History Register, global history is a vital piece of any branch predictor.
As such, it is handled by the abstract BranchPredictor class. Any branch predictor extending the abstract
BranchPredictor class gets access to global history without having to handle snapshotting, updating, and by-
passing.

Operating System-aware Global Histories

Although the data on its benefits are preliminary, BOOM does support OS-aware global histories. The normal global
history tracks all instructions from all privilege levels. A second user-only global history tracks only user-level in-
structions.

3.7. Branch Prediction 19

RISCV-BOOM Documentation

The Two-bit Counter Tables

The basic building block of most branch predictors is the “Two-bit Counter Table” (2BC). As a particular branch is
repeatedly taken, the counter saturates upwards to the max value 3 (0b11) or strongly taken. Likewise, repeatedly not-
taken branches saturate towards zero (0b00). The high-order bit specifies the prediction and the low-order bit specifies
the hysteresis (how “strong” the prediction is).

Fig. 3.10: A GShare Predictor uses the global history hashed with the PC to index into a table of 2-bit counters (2BCs).
The high-order bit makes the prediction.

These two-bit counters are aggregated into a table. Ideally, a good branch predictor knows which counter to index to
make the best prediction. However, to fit these two-bit counters into dense SRAM, a change is made to the 2BC finite
state machine – mispredictions made in the weakly not-taken state move the 2BC into the strongly taken state (and
vice versa for weakly taken being mispredicted). The FSM behavior is shown in Fig. 3.11.

Although it’s no longer strictly a “counter”, this change allows us to separate out the read and write requirements on
the prediction and hystersis bits and place them in separate sequential memory tables. In hardware, the 2BC table can
be implemented as follows:

The P-bit:

• Read - every cycle to make a prediction

• Write - only when a misprediction occurred (the value of the h-bit).

The H-bit:

• Read - only when a misprediction occurred.

• Write - when a branch is resolved (write the direction the branch took).

Fig. 3.11: The Two-bit Counter (2BC) State Machine

By breaking the high-order p-bit and the low-order h-bit apart, we can place each in 1 read/1 write SRAM. A few more
assumptions can help us do even better. Mispredictions are rare and branch resolutions are not necessarily occurring on
every cycle. Also, writes can be delayed or even dropped altogether. Therefore, the h-table can be implemented using

20 Chapter 3. Table of Contents

RISCV-BOOM Documentation

a single 1rw-ported SRAM by queueing writes up and draining them when a read is not being performed. Likewise,
the p-table can be implemented in 1rw-ported SRAM by banking it – buffer writes and drain when there is not a read
conflict.

A final note: SRAMs are not happy with a “tall and skinny” aspect ratio that the 2BC tables require. However, the
solution is simple – tall and skinny can be trivially transformed into a rectangular memory structure. The high-order
bits of the index can correspond to the SRAM row and the low-order bits can be used to mux out the specific bits from
within the row.

The GShare Predictor

GShare is a simple but very effective branch predictor. Predictions are made by hashing the instruction address and
the GHR (typically a simple XOR) and then indexing into a table of two-bit counters. Fig. 3.10 shows the logical
architecture and Fig. 3.12 shows the physical implementation and structure of the GShare predictor. Note that the
prediction begins in the F0 stage when the requesting address is sent to the predictor but that the prediction is made
later in the F3 stage once the instructions have returned from the instruction cache and the prediction state has been
read out of the GShare’s p-table.

Fig. 3.12: The GShare Predictor Pipeline

The TAGE Predictor

Fig. 3.13: The TAGE predictor. The requesting address (PC) and the global history are fed into each table’s index hash
and tag hash. Each table provides its own prediction (or no prediction) and the table with the longest history wins.

BOOM also implements the TAGE conditional branch predictor. TAGE is a highly-parameterizable, state-of-the-art
global history predictor. The design is able to maintain a high degree of accuracy while scaling from very small
predictor sizes to very large predictor sizes. It is fast to learn short histories while also able to learn very, very long
histories (over a thousand branches of history).

3.7. Branch Prediction 21

RISCV-BOOM Documentation

TAGE (TAgged GEometric) is implemented as a collection of predictor tables. Each table entry contains a prediction
counter, a usefulness counter, and a tag. The prediction counter provides the prediction (and maintains some hysteresis
as to how strongly biased the prediction is towards taken or not-taken). The usefulness counter tracks how useful the
particular entry has been in the past for providing correct predictions. The tag allows the table to only make a prediction
if there is a tag match for the particular requesting instruction address and global history.

Each table has a different (and geometrically increasing) amount of history associated with it. Each table’s history is
used to hash with the requesting instruction address to produce an index hash and a tag hash. Each table will make
its own prediction (or no prediction, if there is no tag match). The table with the longest history making a prediction
wins.

On a misprediction, TAGE attempts to allocate a new entry. It will only overwrite an entry that is “not useful” (ubits
== 0).

TAGE Global History and the Circular Shift Registers (CSRs)15

Each TAGE table has associated with it its own global history (and each table has geometrically more history than
the last table). The histories contain many more bits of history that can be used to index a TAGE table; therefore, the
history must be “folded” to fit. A table with 1024 entries uses 10 bits to index the table. Therefore, if the table uses 20
bits of global history, the top 10 bits of history are XOR’ed against the bottom 10 bits of history.

Instead of attempting to dynamically fold a very long history register every cycle, the history can be stored in a circular
shift register (CSR). The history is stored already folded and only the new history bit and the oldest history bit need to
be provided to perform an update. Listing 3.1 shows an example of how a CSR works.

Listing 3.1: The circular shift register. When a new branch outcome is
added, the register is shifted (and wrapped around). The new outcome is
added and the oldest bit in the history is “evicted”.

Example:
A 12 bit value (0b_0111_1001_1111) folded onto a 5 bit CSR becomes
(0b_0_0010), which can be found by:

/-- history[12] (evict bit)
|

c[4], c[3], c[2], c[1], c[0]
| ^
| |
_______________________/ \---history[0] (newly taken bit)

(c[4] ^ h[0] generates the new c[0]).
(c[1] ^ h[12] generates the new c[2]).

Each table must maintain three CSRs. The first CSR is used for computing the index hash and has a size
n=log(num_table_entries). As a CSR contains the folded history, any periodic history pattern matching
the length of the CSR will XOR to all zeroes (potentially quite common). For this reason, there are two CSRs for
computing the tag hash, one of width n and the other of width n-1.

For every prediction, all three CSRs (for every table) must be snapshotted and reset if a branch misprediction occurs.
Another three commit copies of these CSRs must be maintained to handle pipeline flushes.

15 No relation to the Control/Status Registers (CSRs) in RISC-V.

22 Chapter 3. Table of Contents

RISCV-BOOM Documentation

Usefulness counters (u-bits)

The “usefulness” of an entry is stored in the u-bit counters. Roughly speaking, if an entry provides a correct prediction,
the u-bit counter is incremented. If an entry provides an incorrect prediction, the u-bit counter is decremented. When
a misprediction occurs, TAGE attempts to allocate a new entry. To prevent overwriting a useful entry, it will only
allocate an entry if the existing entry has a usefulness of zero. However, if an entry allocation fails because all of the
potential entries are useful, then all of the potential entries are decremented to potentially make room for an allocation
in the future.

To prevent TAGE from filling up with only useful but rarely-used entries, TAGE must provide a scheme for “degrad-
ing” the u-bits over time. A number of schemes are available. One option is a timer that periodically degrades the
u-bit counters. Another option is to track the number of failed allocations (incrementing on a failed allocation and
decremented on a successful allocation). Once the counter has saturated, all u-bits are degraded.

TAGE Snapshot State

For every prediction, all three CSRs (for every table) must be snapshotted and reset if a branch misprediction occurs.
TAGE must also remember the index of each table that was checked for a prediction (so the correct entry for each
table can be updated later). Finally, TAGE must remember the tag computed for each table – the tags will be needed
later if a new entry is to be allocated.16

Other Predictors

BOOM provides a number of other predictors that may provide useful.

The Base Only Predictor

The Base Only Predictor uses the BTBs BIM to make a prediction on whether the branch was taken or not.

The Null Predictor

The Null Predictor is used when no BPD predictor is desired. It will always predict “not taken”.

The Random Predictor

The Random Predictor uses an LFSR to randomize both “was a prediction made?” and “which direction each branch
in the Fetch Packet should take?”. This is very useful for both torturing-testing BOOM and for providing a worse-case
performance baseline for comparing branch predictors.

3.8 The Decode Stage

The Decode stage takes instructions from the Fetch Buffer, decodes them, and allocates the necessary resources as
required by each instruction. The Decode stage will stall as needed if not all resources are available.

16 There are ways to mitigate some of these costs, but this margin is too narrow to contain them.

3.8. The Decode Stage 23

RISCV-BOOM Documentation

3.8.1 RVC Changes

RVC decode is performed by expanding RVC instructions using Rocket’s RVCExpander. This does not change
normal functionality of the Decode stage.

3.9 The Rename Stage

The Rename stage maps the ISA (or logical) register specifiers of each instruction to physical register specifiers.

3.9.1 The Purpose of Renaming

Renaming is a technique to rename the ISA (or logical) register specifiers in an instruction by mapping them to a
new space of physical registers. The goal to register renaming is to break the output-dependencies (WAW) and anti-
dependences (WAR) between instructions, leaving only the true dependences (RAW). Said again, but in architectural
terminology, register renaming eliminates write-after-write (WAW) and write-after-read (WAR) hazards, which are
artifacts introduced by a) only having a limited number of ISA registers to use as specifiers and b) loops, which by
their very nature will use the same register specifiers on every loop iteration.

3.9.2 The Explicit Renaming Design

BOOM is an “explicit renaming” or “physical register file” out-of-order core design. A Physical Register File, con-
taining many more registers than the ISA dictates, holds both the committed architectural register state and speculative
register state. The Rename Map Table s contain the information needed to recover the committed state. As instruc-
tions are renamed, their register specifiers are explicitly updated to point to physical registers located in the Physical
Register File.1

This is in contrast to an “implicit renaming” or “data-in-ROB” out-of-order core design. The Architectural Register
File (ARF) only holds the committed register state, while the ROB holds the speculative write-back data. On commit,
the ROB transfers the speculative data to the ARF[2]_

3.9.3 The Rename Map Table

The Rename Map Table (abbreviated as Map Table) holds the speculative mappings from ISA registers to physical
registers.

Each branch gets its own copy of the Rename Map Table[3]_ On a branch mispredict, the Rename Map Table can be
reset instantly from the mispredicting branch’s copy of the Rename Map Table

As the RV64G ISA uses fixed locations of the register specifiers (and no implicit register specifiers), the Map Table
can be read before the instruction is decoded! And hence the Decode and Rename stages can be combined.

Resets on Exceptions and Flushes

An additional, optional “Committed Map Table” holds the rename map for the committed architectural state. If
enabled, this allows single-cycle reset of the pipeline during flushes and exceptions (the current map table is reset to
the Committed Map Table). Otherwise, pipeline flushes require multiple cycles to “unwind” the ROB to write back in
the rename state at the commit point, one ROB row per cycle.

1 The MIPS R10k, Alpha 21264, Intel Sandy Bridge, and ARM Cortex A15 cores are all example of explicit renaming out-of-order cores.

24 Chapter 3. Table of Contents

RISCV-BOOM Documentation

Fig. 3.14: A PRF design (left) and a data-in-ROB design (right)

3.9. The Rename Stage 25

RISCV-BOOM Documentation

Fig. 3.15: The Rename Stage. Logical register specifiers read the Rename Map Table to get their physical specifier.
For superscalar rename, any changes to the Map Tables must be bypassed to dependent instructions. The physical
source specifiers can then read the Busy Table. The Stale specifier is used to track which physical register will be freed
when the instruction later commits. P0 in the Physical Register File is always 0.

26 Chapter 3. Table of Contents

RISCV-BOOM Documentation

3.9.4 The Busy Table

The Busy Table tracks the readiness status of each physical register. If all physical operands are ready, the instruction
will be ready to be issued.

3.9.5 The Free List

The Free List tracks the physical registers that are currently un-used and is used to allocate new physical registers to
instructions passing through the Rename stage.

The Free List is implemented as a bit-vector. A priority decoder can then be used to find the first free register. BOOM
uses a cascading priority decoder to allocate multiple registers per cycle.4

On every branch (or JALR), the Rename Map Tables are snapshotted to allow single-cycle recovery on a branch
misprediction. Likewise, the Free List also sets aside a new “Allocation List”, initialized to zero. As new physical
registers are allocated, the Allocation List for each branch is updated to track all of the physical registers that have
been allocated after the branch. If a misspeculation occurs, its Allocation List is added back to the Free List by OR’ing
the branch’s Allocation List with the Free List.5

3.9.6 Stale Destination Specifiers

For instructions that will write a register, the Map Table is read to get the stale physical destination specifier (“stale
pdst”). Once the instruction commits, the stale pdst is returned to the Free List, as no future instructions will read it.

3.10 The Reorder Buffer (ROB) and the Dispatch Stage

The Reorder Buffer (ROB) tracks the state of all inflight instructions in the pipeline. The role of the ROB is to provide
the illusion to the programmer that his program executes in-order. After instructions are decoded and renamed, they
are then dispatched to the ROB and the Issue Queue and marked as busy. As instructions finish execution, they inform
the ROB and are marked not busy. Once the “head” of the ROB is no longer busy, the instruction is committed, and
it’s architectural state now visible. If an exception occurs and the excepting instruction is at the head of the ROB, the
pipeline is flushed and no architectural changes that occurred after the excepting instruction are made visible. The
ROB then redirects the PC to the appropriate exception handler.

3.10.1 The ROB Organization

The ROB is, conceptually, a circular buffer that tracks all inflight instructions in-order. The oldest instruction is pointed
to by the commit head, and the newest instruction will be added at the rob tail.

To facilitate superscalar dispatch and commit, the ROB is implemented as a circular buffer with W banks (where W is
the dispatch and commit width of the machine1). This organization is shown in Fig. 3.16.

At dispatch, up to W instructions are written from the Fetch Packet into an ROB row, where each instruction is written
to a different bank across the row. As the instructions within a Fetch Packet are all consecutive (and aligned) in

4 A two-wide Rename stage could use two priority decoders starting from opposite ends.
5 Conceptually, branches are often described as “snapshotting” the Free List (along with an OR’ing with the current Free List at the time of the

misprediction). However, snapshotting fails to account for physical registers that were allocated when the snapshot occurs, then become freed, then
becomes re-allocated before the branch mispredict is detected. In this scenario, the physical register gets leaked, as neither the snapshot nor the
current Free List know that it had been freed. Eventually, the processor slows as it struggles to maintain enough inflight physical registers, until
finally the machine comes to a halt. If this sounds autobiographical because the original author (Chris) may have trusted computer architecture
lectures, well. . .

1 This design sets up the dispatch and commit widths of BOOM to be the same. However, that is not necessarily a fundamental constraint, and
it would be possible to orthogonalize the dispatch and commit widths, just with more added control complexity.

3.10. The Reorder Buffer (ROB) and the Dispatch Stage 27

RISCV-BOOM Documentation

Fig. 3.16: The Reorder Buffer for a two-wide BOOM with three-issue. Dispatched uops (dis uops) are written at the
bottom of the ROB (rob tail), while committed uops (com uops) are committed from the top, at rob head, and update
the rename state. Uops that finish executing (wb uops) clear their busy bit. Note: the dispatched uops are written into
the same ROB row together, and are located consecutively in memory allowing a single PC to represent the entire row.

memory, this allows a single PC to be associated with the entire Fetch Packet (and the instruction’s position within the
Fetch Packet provides the low-order bits to its own PC). While this means that branching code will leave bubbles in
the ROB, it makes adding more instructions to the ROB very cheap as the expensive costs are amortized across each
ROB row.

3.10.2 ROB State

Each ROB entry contains relatively little state:

• is entry valid?

• is entry busy?

• is entry an exception?

• branch mask (which branches is this entry still speculated under?

• rename state (what is the logical destination and the stale physical destination?)

• floating-point status updates

• other miscellaneous data (e.g., helpful for statistic tracking)

The PC and the branch prediction information is stored on a per-row basis (see PC Storage). The Exception State
only tracks the oldest known excepting instruction (see Exception State).

Exception State

The ROB tracks the oldest excepting instruction. If this instruction reaches the head of the ROB, then an exception is
thrown.

28 Chapter 3. Table of Contents

RISCV-BOOM Documentation

Each ROB entry is marked with a single-bit to signify whether or not the instruction has encountered exceptional
behavior, but the additional exception state (e.g., the bad virtual address and the exception cause) is only tracked for
the oldest known excepting instruction. This saves considerable state by not storing this on a per entry basis.

PC Storage

The ROB must know the PC of every inflight instruction. This information is used in the following situations:

• Any instruction could cause an exception, in which the “exception pc” (epc) must be known.

• Branch and jump instructions need to know their own PC for for target calculation.

• Jump-register instructions must know both their own PC and the PC of the following instruction in the program
to verify if the Front-end predicted the correct JR target.

This information is incredibly expensive to store. Instead of passing PCs down the pipeline, branch and jump instruc-
tions access the ROB’s “PC File” during the Register-read stage for use in the Branch Unit. Two optimizations are
used:

• only a single PC is stored per ROB row.

• the PC File is stored in two banks, allowing a single read-port to read two consecutive entries simultaneously
(for use with JR instructions).

3.10.3 The Commit Stage

When the instruction at the commit head is no longer busy (and it is not excepting), it may be committed, i.e., its
changes to the architectural state of the machine are made visible. For superscalar commit, the entire ROB row is
analyzed for not busy instructions (and thus, up to the entire ROB row may be committed in a single cycle). The ROB
will greedily commit as many instructions as it can per row to release resource as soon as possible. However, the ROB
does not (currently) look across multiple rows to find commit-able instructions.

Only once a store has been committed may it be sent to memory. For superscalar committing of stores, the Load/Store
Unit (LSU) is told “how many stores” may be marked as committed. The LSU will then drain the committed stores
to memory as it sees fit.

When an instruction (that writes to a register) commits, it then frees the stale physical destination register. The stale
pdst is then free to be re-allocated to a new instruction.

3.10.4 Exceptions and Flushes

Exceptions are handled when the instruction at the commit head is excepting. The pipeline is then flushed and the ROB
emptied. The Rename Map Tables must be reset to represent the true, non-speculative committed state. The Front-
end is then directed to the appropriate PC. If it is an architectural exception, the excepting instruction’s PC (referred to
as the exception vector) is sent to the Control/Status Register (CSR) file. If it is a micro-architectural exception (e.g.,
a load/store ordering misspeculation) the failing instruction is refetched and execution can begin anew.

Parameterization - Rollback versus Single-cycle Reset

The behavior of resetting the Rename Map Tables is parameterizable. The first option is to rollback the ROB one row
per cycle to unwind the rename state (this is the behavior of the MIPS R10k). For each instruction, the stale physical
destination register is written back into the Map Table for its logical destination specifier.

3.10. The Reorder Buffer (ROB) and the Dispatch Stage 29

RISCV-BOOM Documentation

A faster single-cycle reset is available. This is accomplished by using another rename snapshot that tracks the com-
mitted state of the rename tables. This Committed Map Table is updated as instructions commit.2

Causes

The RV64G ISA provides relatively few exception sources:

Load/Store Unit

• page faults

Branch Unit

• misaligned fetches

Decode Stage

• all other exceptions and interrupts can be handled before the instruction is dispatched to the
ROB

Note that memory ordering speculation errors also originate from the Load/Store Unit, and are treated as exceptions
in the BOOM pipeline (actually they only cause a pipeline “retry”).

3.10.5 Point of No Return (PNR)

The point-of-no-return head runs ahead of the ROB commit head, marking the next instruction which might be mis-
speculated or generate an exception. These include unresolved branches and untranslated memory operations. Thus,
the instructions ahead of the commit head and behind the PNR head are guaranteed to be non-speculative, even if they
have not yet written back.

Currently the PNR is only used for RoCC instructions. RoCC co-processors typically expect their instructions in-
order, and do not tolerate misspeculation. Thus we can only issue a instruction to our co-processor when it has past
the PNR head, and thus is no longer speculative.

3.11 The Issue Unit

The Issue Queue s hold dispatched Micro-Ops (UOPs) that have not yet executed. When all of the operands for the
UOP<Micro-Op (UOP) are ready, the issue slot sets its “request” bit high. The issue select logic then chooses to issue
a slot which is asserting its “request” signal. Once a UOP<Micro-Op (UOP) is issued, it is removed from the Issue
Queue to make room for more dispatched instructions.

BOOM uses a split Issue Queues - instructions of specific types are placed into a unique Issue Queue (integer, floating
point, memory).

3.11.1 Speculative Issue

Although not yet supported, future designs may choose to speculatively issue UOPs<Micro-Op (UOP) for improved
performance (e.g., speculating that a load instruction will hit in the cache and thus issuing dependent UOPs<Micro-Op
(UOP) assuming the load data will be available in the bypass network). In such a scenario, the Issue Queue cannot
remove speculatively issued UOPs<Micro-Op (UOP) until the speculation has been resolved. If a speculatively-issued
UOP<Micro-Op (UOP) failure occurs, then all issued UOPs<Micro-Op (UOP) that fall within the speculated window
must be killed and retried from the Issue Queue. More advanced techniques are also available.

2 The tradeoff here is between longer latencies on exceptions versus an increase in area and wiring.

30 Chapter 3. Table of Contents

RISCV-BOOM Documentation

3.11.2 Issue Slot

Fig. 3.17 shows a single issue slot from the Issue Queue.1

Instructions are dispatched into the Issue Queue. From here, they wait for all of their operands to be ready (“p” stands
for presence bit, which marks when an operand is present in the register file).

Once ready, the issue slot will assert its “request” signal, and wait to be issued.

3.11.3 Issue Select Logic

Fig. 3.17: A single issue slot from the Issue Queue.

Each issue select logic port is a static-priority encoder that picks that first available UOP<Micro-Op (UOP) in the
Issue Queue. Each port will only schedule a UOP<Micro-Op (UOP) that its port can handle (e.g., floating point
UOPs<Micro-Op (UOP) will only be scheduled onto the port governing the Floating Point Unit). This creates a
cascading priority encoder for ports that can schedule the same UOPs<Micro-Op (UOP) as each other.

If a Functional Unit is unavailable, it de-asserts its available signal and instructions will not be issued to it (e.g., an
un-pipelined divider).

3.11.4 Un-ordered Issue Queue

There are two scheduling policies available in BOOM.

1 Conceptually, a bus is shown for implementing the driving of the signals sent to the Register Read Stage. In reality BOOM actually uses
muxes.

3.11. The Issue Unit 31

RISCV-BOOM Documentation

The first is a MIPS R10K-style Un-ordered Issue Queue. Dispatching instructions are placed into the first available
Issue Queue slot and remain there until they are issued. This can lead to pathologically poor performance, particularly
in scenarios where unpredictable branches are placed into the lower priority slots and are unable to be issued until
the ROB fills up and the Issue Window starts to drain. Because instructions following branches are only implicitly
dependent on the branch, there is no other forcing function that enables the branches to issue earlier, except the filling
of the ROB.

3.11.5 Age-ordered Issue Queue

The second available policy is an Age-ordered Issue Queue. Dispatched instructions are placed into the bottom of the
Issue Queue (at lowest priority). Every cycle, every instruction is shifted upwards (the Issue queue is a “collapsing
queue”). Thus, the oldest instructions will have the highest issue priority. While this increases performance by
scheduling older branches and older loads as soon as possible, it comes with a potential energy penalty as potentially
every Issue Queue slot is being read and written to on every cycle.

3.11.6 Wake-up

There are two types of wake-up in BOOM - fast wakeup and slow wakeup (also called a long latency wakeup). Because
ALU UOPs<Micro-Op (UOP) can send their write-back data through the bypass network, issued ALU UOPs<Micro-
Op (UOP) will broadcast their wakeup to the Issue Queue as they are issued.

However, floating-point operations, loads, and variable latency operations are not sent through the bypass network,
and instead the wakeup signal comes from the register file ports during the write-back stage.

3.12 The Register Files and Bypass Network

Fig. 3.18: An example multi-issue pipeline. The integer register file needs 6 read ports and 3 write ports for the
execution units present. The FP register file needs 3 read ports and 2 write ports. FP and memory operations share a
long latency write port to both the integer and FP register file. To make scheduling of the write port trivial, the ALU’s
pipeline is lengthened to match the FPU latency. The ALU is able to bypass from any of these stages to dependent
instructions in the Register Read stage.

BOOM is a unified, Physical Register File (PRF) design. The register files hold both the committed and speculative
state. Additionally, there are two register files: one for integer and one for floating point register values. The Rename
Map Tables track which physical register corresponds to which ISA register.

BOOM uses the Berkeley hardfloat floating point units which use an internal 65-bit operand format (https://github.
com/ucb-bar/berkeley-hardfloat). Therefore, all physical floating point registers are 65-bits.

3.12.1 Register Read

The register file statically provisions all of the register read ports required to satisfy all issued instructions. For
example, if issue port #0 corresponds to an integer ALU and issue port #1 corresponds to memory unit, then the first
two register read ports will statically serve the ALU and the next two register read ports will service the memory unit
for four total read ports.

32 Chapter 3. Table of Contents

https://github.com/ucb-bar/berkeley-hardfloat
https://github.com/ucb-bar/berkeley-hardfloat

RISCV-BOOM Documentation

Dynamic Read Port Scheduling

Future designs can improve area-efficiency by provisioning fewer register read ports and using dynamically scheduling
to arbitrate for them. This is particularly helpful as most instructions need only one operand. However, it does add
extra complexity to the design, which is often manifested as extra pipeline stages to arbitrate and detect structural
hazards. It also requires the ability to kill issued Micro-Ops (UOPs)<Micro-Op (UOP) and re-issue them from the
Issue Queue on a later cycle.

3.12.2 Bypass Network

ALU operations can be issued back-to-back by having the write-back values forwarded through the Bypass Network.
Bypassing occurs at the end of the Register Read stage.

3.13 The Execute Pipeline

Fig. 3.19: An example pipeline for a dual-issue BOOM. The first issue port schedules UOP<Micro-Op (UOP)‘s onto
Execute Unit #0, which can accept ALU operations, FPU operations, and integer multiply instructions. The second
issue port schedules ALU operations, integer divide instructions (unpipelined), and load/store operations. The ALU
operations can bypass to dependent instructions. Note that the ALU in Execution Unit #0 is padded with pipeline regis-
ters to match latencies with the FPU and iMul units to make scheduling for the write-port trivial. Each :term:‘Execution
Unit has a single issue-port dedicated to it but contains within it a number of lower-level :term:‘Functional Unit‘s.

The Execution Pipeline covers the execution and write-back of Micro-Ops (UOPs). Although the UOPs<Micro-Op
(UOP) will travel down the pipeline one after the other (in the order they have been issued), the UOPs<Micro-Op

3.13. The Execute Pipeline 33

RISCV-BOOM Documentation

(UOP) themselves are likely to have been issued to the Execution Pipeline out-of-order. Fig. 3.19 shows an example
Execution Pipeline for a dual-issue BOOM.

3.13.1 Execution Units

Fig. 3.20: An example Execution Unit. This particular example shows an integer ALU (that can bypass results to
dependent instructions) and an unpipelined divider that becomes busy during operation. Both Functional Unit‘s share
a single write-port. The :term:‘Execution Unit accepts both kill signals and branch resolution signals and passes them
to the internal Functional Unit s as required.

An Execution Unit is a module that a single issue port will schedule UOPs<Micro-Op (UOP) onto and contains some
mix of Functional Unit s. Phrased in another way, each issue port from the Issue Queue talks to one and only one
Execution Unit. An Execution Unit may contain just a single simple integer ALU, or it could contain a full complement
of floating point units, a integer ALU, and an integer multiply unit.

The purpose of the Execution Unit is to provide a flexible abstraction which gives a lot of control over what kind of
Execution Unit s the architect can add to their pipeline

Scheduling Readiness

An Execution Unit provides a bit-vector of the Functional Unit s it has available to the issue scheduler. The issue
scheduler will only schedule UOPs<Micro-Op (UOP) that the Execution Unit supports. For Functional Unit s that
may not always be ready (e.g., an un-pipelined divider), the appropriate bit in the bit-vector will be disabled (See Fig.
3.19).

34 Chapter 3. Table of Contents

RISCV-BOOM Documentation

3.13.2 Functional Unit

Fig. 3.21: The abstract Pipelined Functional Unit class. An expert-written, low-level Functional Unit is instantiated
within the Functional Unit. The request and response ports are abstracted and bypass and branch speculation support
is provided. UOPs<Micro-Op (UOP) are individually killed by gating off their response as they exit the low-level
Functional Unit .

Functional Unit s are the muscle of the CPU, computing the necessary operations as required by the instructions.
Functional Unit s typically require a knowledgable domain expert to implement them correctly and efficiently.

For this reason, BOOM uses an abstract Functional Unit class to “wrap” expert-written, low-level Functional Unit s
from the Rocket repository (see Rocket Chip SoC Generator). However, the expert-written Functional Unit s created
for the Rocket in-order processor make assumptions about in-order issue and commit points (namely, that once an
instruction has been dispatched to them it will never need to be killed). These assumptions break down for BOOM.

However, instead of re-writing or forking the Functional Unit s, BOOM provides an abstract Functional Unit class (see
Fig. 3.21) that “wraps” the lower-level functional units with the parameterized auto-generated support code needed to
make them work within BOOM. The request and response ports are abstracted, allowing Functional Unit s to provide
a unified, interchangeable interface.

Pipelined Functional Units

A pipelined Functional Unit can accept a new UOP<Micro-Op (UOP) every cycle. Each UOP<Micro-Op (UOP) will
take a known, fixed latency.

Speculation support is provided by auto-generating a pipeline that passes down the UOP<Micro-Op (UOP) meta-
data and branch mask in parallel with the UOP<Micro-Op (UOP) within the expert-written Functional Unit . If a
UOP<Micro-Op (UOP) is misspeculated, it’s response is de-asserted as it exits the functional unit.

3.13. The Execute Pipeline 35

RISCV-BOOM Documentation

An example pipelined Functional Unit is shown in Fig. 3.21.

Un-pipelined Functional Units

Un-pipelined Functional Unit s (e.g., a divider) take an variable (and unknown) number of cycles to complete a
single operation. Once occupied, they de-assert their ready signal and no additional UOPs<Micro-Op (UOP) may be
scheduled to them.

Speculation support is provided by tracking the branch mask of the UOP<Micro-Op (UOP) in the Functional Unit.

The only requirement of the expert-written un-pipelined Functional Unit is to provide a kill signal to quickly remove
misspeculated UOPs<Micro-Op (UOP).1

Fig. 3.22: The dashed ovals are the low-level Functional Unit s written by experts, the squares are concrete classes
that instantiate the low-level Functional Unit s, and the octagons are abstract classes that provide generic speculation
support and interfacing with the BOOM pipeline. The floating point divide and squart-root unit doesn’t cleanly fit
either the Pipelined nor Unpipelined abstract class, and so directly inherits from the FunctionalUnit
super class.

3.13.3 Branch Unit & Branch Speculation

The Branch Unit handles the resolution of all branch and jump instructions.

1 This constraint could be relaxed by waiting for the un-pipelined unit to finish before de-asserting its busy signal and suppressing the valid
output signal.

36 Chapter 3. Table of Contents

RISCV-BOOM Documentation

All UOPs<Micro-Op (UOP) that are “inflight” in the pipeline (have an allocated ROB entry) are given a branch mask,
where each bit in the branch mask corresponds to an un-executed, inflight branch that the UOP<Micro-Op (UOP) is
speculated under. Each branch in Decode is allocated a branch tag, and all following UOPs<Micro-Op (UOP) will
have the corresponding bit in the branch mask set (until the branch is resolved by the Branch Unit).

If the branches (or jumps) have been correctly speculated by the Front-end, then the Branch Unit s only action is
to broadcast the corresponding branch tag to all inflight UOPs<Micro-Op (UOP) that the branch has been resolved
correctly. Each UOP<Micro-Op (UOP) can then clear the corresponding bit in its branch mask, and that branch tag
can then be allocated to a new branch in the Decode stage.

If a branch (or jump) is misspeculated, the Branch Unit must redirect the PC to the correct target, kill the Front-end
and Fetch Buffer, and broadcast the misspeculated branch tag so that all dependent, inflight UOPs<Micro-Op (UOP)
may be killed. The PC redirect signal goes out immediately, to decrease the misprediction penalty. However, the kill
signal is delayed a cycle for critical path reasons.

The Front-end must pass down the pipeline the appropriate branch speculation meta-data, so that the correct direction
can be reconciled with the prediction. Jump Register instructions are evaluated by comparing the correct target with
the PC of the next instruction in the ROB (if not available, then a misprediction is assumed). Jumps are evaluated and
handled in the Front-end (as their direction and target are both known once the instruction can be decoded).

BOOM (currently) only supports having one Branch Unit .

3.13.4 Load/Store Unit

The Load/Store Unit (LSU) handles the execution of load, store, atomic, and fence operations.

BOOM (currently) only supports having one LSU (and thus can only send one load or store per cycle to memory).2

See The Load/Store Unit (LSU) for more details on the LSU.

3.13.5 Floating Point Units

The low-level floating point units used by BOOM come from the Rocket processor (https://github.com/chipsalliance/
rocket-chip) and hardfloat (https://github.com/ucb-bar/berkeley-hardfloat) repositories. Figure Fig. 3.23 shows the
class hierarchy of the FPU.

To make the scheduling of the write-port trivial, all of the pipelined FP units are padded to have the same latency.3

3.13.6 Floating Point Divide and Square-root Unit

BOOM fully supports floating point divide and square-root operations using a single FDiv/Sqrt (or fdiv for short).
BOOM accomplishes this by instantiating a double-precision unit from the hardfloat repository. The unit comes with
the following features/constraints:

• expects 65-bit recoded double-precision inputs

• provides a 65-bit recoded double-precision output

• can execute a divide operation and a square-root operation simultaneously

• operations are unpipelined and take an unknown, variable latency

• provides an unstable FIFO interface

2 Relaxing this constraint could be achieved by allowing multiple LSUs to talk to their own bank(s) of the data-cache, but the added complexity
comes in allocating entries in the LSU before knowing the address, and thus which bank, a particular memory operation pertains to.

3 Rocket instead handles write-port scheduling by killing and refetching the offending instruction (and all instructions behind it) if there is a
write-port hazard detected. This would be far more heavy-handed to do in BOOM.

3.13. The Execute Pipeline 37

https://github.com/chipsalliance/rocket-chip
https://github.com/chipsalliance/rocket-chip
https://github.com/ucb-bar/berkeley-hardfloat

RISCV-BOOM Documentation

Fig. 3.23: The class hierarchy of the FPU is shown. The expert-written code is contained within the hardfloat and
rocket repositories. The “FPU” class instantiates the Rocket components, which itself is further wrapped by the
abstract Functional Unit classes (which provides the out-of-order speculation support).

38 Chapter 3. Table of Contents

RISCV-BOOM Documentation

Single-precision operations have their operands upscaled to double-precision (and then the output downscaled).4

Although the unit is unpipelined, it does not fit cleanly into the Pipelined/Unpipelined abstraction used by the other
Functional Unit s (see Fig. 3.22). This is because the unit provides an unstable FIFO interface: although the unit may
provide a ready signal on Cycle i, there is no guarantee that it will continue to be ready on Cycle i+1, even if no
operations are enqueued. This proves to be a challenge, as the Issue Queue may attempt to issue an instruction but
cannot be certain the unit will accept it once it reaches the unit on a later cycle.

The solution is to add extra buffering within the unit to hold instructions until they can be released directly into the
unit. If the buffering of the unit fills up, back pressure can be safely applied to the Issue Queue.5

3.13.7 Parameterization

BOOM provides flexibility in specifying the issue width and the mix of Functional Unit s in the execution pipeline.
See src/main/scala/exu/execution-units.scala for a detailed view on how to instantiate the execution
pipeline in BOOM.

Additional parameterization, regarding things like the latency of the FP units can be found within the configuration
settings (src/main/common/config-mixins.scala).

3.13.8 Control/Status Register Instructions

A set of Control/Status Register (CSR) instructions allow the atomic read and write of the Control/Status Registers.
These architectural registers are separate from the integer and floating registers, and include the cycle count, retired
instruction count, status, exception PC, and exception vector registers (and many more!). Each CSR has its own
required privilege levels to read and write to it and some have their own side-effects upon reading (or writing).

BOOM (currently) does not rename any of the CSRs, and in addition to the potential side-effects caused by reading or
writing a CSR, BOOM will only execute a CSR instruction non-speculatively.6 This is accomplished by marking
the CSR instruction as a “unique” (or “serializing”) instruction - the ROB must be empty before it may proceed to the
Issue Queue (and no instruction may follow it until it has finished execution and been committed by the ROB). It is
then issued by the Issue Queue, reads the appropriate operands from the Physical Register File, and is then sent to the
CSRFile.7 The CSR instruction executes in the CSRFile and then writes back data as required to the Physical Register
File. The CSRFile may also emit a PC redirect and/or an exception as part of executing a CSR instruction (e.g., a
syscall).

3.13.9 The Rocket Custom Co-Processor Interface (RoCC)

The RoCC interface accepts a RoCC command and up to two register inputs from the Control Processor’s scalar
register file. The RoCC command is actually the entire RISC-V instruction fetched by the Control Processor (a “RoCC
instruction”). Thus, each RoCC queue entry is at least 2*XPRLEN + 32 bits in size (additional RoCC instructions
may use the longer instruction formats to encode additional behaviors).

As BOOM does not store the instruction bits in the ROB, a separate data structure (A “RoCC Shim”) holds the
instructions until the RoCC instruction can be committed and the RoCC command sent to the co-processor.

The source operands will also require access to BOOM’s register file. RoCC instructions are dispatched to the Issue
Window, and scheduled so that they may access the read ports of the register file once the operands are available. The

4 It is cheaper to perform the SP-DP conversions than it is to instantiate a single-precision fdivSqrt unit.
5 It is this ability to hold multiple inflight instructions within the unit simultaneously that breaks the “only one instruction at a time” assumption

required by the UnpipelinedFunctionalUnit abstract class.
6 There is a lot of room to play with regarding the CSRs. For example, it is probably a good idea to rename the register (dedicated for use by the

supervisor) as it may see a lot of use in some kernel code and it causes no side-effects.
7 The CSRFile is a Rocket component.

3.13. The Execute Pipeline 39

RISCV-BOOM Documentation

operands are then written into the RoCC Shim, which stores the operands and the instruction bits until they can be sent
to the co-processor. This requires significant state.

After issue to RoCC, we track a queue of in-flight RoCC instructions, since we need to translate the logical destination
register identifier from the RoCC response into the previously renamed physical destination register identifier.

Currently the RoCC interface does not support interrupts, exceptions, reusing the BOOM FPU, or direct access to the
L1 data cache. This should all be straightforward to add, and will be completed as demand arises.

3.14 The Load/Store Unit (LSU)

The Load/Store Unit (LSU) is responsible for deciding when to fire memory operations to the memory system. There
are two queues: the Load Queue (LDQ), and the Store Queue (STQ). Load instructions generate a “uopLD” Micro-
Op (UOP). When issued, “uopLD” calculates the load address and places its result in the LDQ. Store instructions
(may) generate two UOP s, “uopSTA” (Store Address Generation) and “uopSTD” (Store Data Generation). The STA
UOP calculates the store address and updates the address in the STQ entry. The STD UOP moves the store data into
the STQ entry. Each of these UOP s will issue out of the Issue Window as soon their operands are ready. See Store
Micro-Ops for more details on the store UOP specifics.

3.14.1 Store Instructions

Entries in the Store Queue are allocated in the Decode stage (stq(i).valid is set). A “valid” bit denotes when an entry in
the STQ holds a valid address and valid data (stq(i).bits.addr.valid and stq(i).bits.data.valid). Once a store instruction
is committed, the corresponding entry in the Store Queue is marked as committed. The store is then free to be fired to
the memory system at its convenience. Stores are fired to the memory in program order.

Store Micro-Ops

Stores are inserted into the issue window as a single instruction (as opposed to being broken up into separate addr-gen
and data-gen UOP s). This prevents wasteful usage of the expensive issue window entries and extra contention on the
issue ports to the LSU. A store in which both operands are ready can be issued to the LSU as a single UOP which
provides both the address and the data to the LSU. While this requires store instructions to have access to two register
file read ports, this is motivated by a desire to not cut performance in half on store-heavy code. Sequences involving
stores to the stack should operate at IPC=1!

However, it is common for store addresses to be known well in advance of the store data. Store addresses should be
moved to the STQ as soon as possible to allow later loads to avoid any memory ordering failures. Thus, the issue
window will emit uopSTA or uopSTD UOP s as required, but retain the remaining half of the store until the second
operand is ready.

3.14.2 Load Instructions

Entries in the Load Queue (LDQ) are allocated in the Decode stage (ldq(i).valid). In Decode, each load entry
is also given a store mask (ldq(i).bits.st_dep_mask), which marks which stores in the Store Queue the
given load depends on. When a store is fired to memory and leaves the Store Queue, the appropriate bit in the store
mask is cleared.

Once a load address has been computed and placed in the LDQ, the corresponding valid bit is set (ldq(i).addr.
valid).

Loads are optimistically fired to memory on arrival to the LSU (getting loads fired early is a huge benefit of
out–of–order pipelines). Simultaneously, the load instruction compares its address with all of the store addresses

40 Chapter 3. Table of Contents

RISCV-BOOM Documentation

Fig. 3.24: The Load/Store Unit

3.14. The Load/Store Unit (LSU) 41

RISCV-BOOM Documentation

that it depends on. If there is a match, the memory request is killed. If the corresponding store data is present, then the
store data is forwarded to the load and the load marks itself as having succeeded. If the store data is not present, then
the load goes to sleep. Loads that have been put to sleep are retried at a later time.1

3.14.3 The BOOM Memory Model

BOOM follows the RVWMO memory consistency model.

BOOM currently exhibits the following behavior:

1. Write -> Read constraint is relaxed (newer loads may execute before older stores).

2. Read -> Read constraint is maintained (loads to the same address appear in order).

3. A thread can read its own writes early.

Ordering Loads to the Same Address

The RISC-V WMO memory model requires that loads to the same address be ordered.2 This requires loads to search
against other loads for potential address conflicts. If a younger load executes before an older load with a matching
address, the younger load must be replayed and the instructions after it in the pipeline flushed. However, this scenario
is only required if a cache coherence probe event snooped the core’s memory, exposing the reordering to the other
threads. If no probe events occurred, the load re-ordering may safely occur.

3.14.4 Memory Ordering Failures

The Load/Store Unit has to be careful regarding store -> load dependences. For the best performance, loads need to
be fired to memory as soon as possible.

sw x1 -> 0(x2)
ld x3 <- 0(x4)

However, if x2 and x4 reference the same memory address, then the load in our example depends on the earlier store.
If the load issues to memory before the store has been issued, the load will read the wrong value from memory, and
a memory ordering failure has occurred. On an ordering failure, the pipeline must be flushed and the Rename Map
Tables reset. This is an incredibly expensive operation.

To discover ordering failures, when a store commits, it checks the entire LDQ for any address matches. If there is a
match, the store checks to see if the load has executed, and if it got its data from memory or if the data was forwarded
from an older store. In either case, a memory ordering failure has occurred.

See Fig. 3.24 for more information about the Load/Store Unit.

1 Higher-performance processors will track why a load was put to sleep and wake it up once the blocking cause has been alleviated.
2 Technically, a fence.r.r could be used to provide the correct execution of software on machines that reorder dependent loads. However, there

are two reasons for an ISA to disallow re-ordering of dependent loads: 1) no other popular ISA allows this relaxation, and thus porting software
to RISC-V could face extra challenges, and 2) cautious software may be too liberal with the appropriate fence instructions causing a slow-down in
software. Thankfully, enforcing ordered dependent loads may not actually be very expensive. For one, load addresses are likely to be known early
- and are probably likely to execute in-order anyways. Second, misordered loads are only a problem in the cache of a cache coherence probe, so
performance penalty is likely to be negligible. The hardware cost is also negligible - loads can use the same CAM search port on the LAQ that
stores must already use. While this may become an issue when supporting one load and one store address calculation per cycle, the extra CAM
search port can either be mitigated via banking or will be small compared to the other hardware costs required to support more cache bandwidth.

42 Chapter 3. Table of Contents

RISCV-BOOM Documentation

3.15 The Memory System

Note: This section is out-of-date as of 8/26/19 due to a new DCache implementation.

BOOM uses the Rocket Chip non-blocking cache (“Hellacache”). Designed for use in in-order processors, a “shim”
is used to connect BOOM to the data cache. The source code for the cache can be found in nbdcache.scala in
the Rocket Chip repository <https://github.com/chipsalliance/rocket-chip>.

The contract with the cache is that it may execute all memory operations sent to it (barring structural hazards). As
BOOM will send speculative load instructions to the cache, the shim (dcacheshim.scala) must track all “inflight
load requests” and their status. If an inflight load is discovered to be misspeculated, it is marked as such in the shim.
Upon return from the data cache, the load’s response to the pipeline is suppressed and it is removed from the inflight
load queue.

The Hellacache does not ack store requests; the absence of a nack is used to signal a success.

All memory requests to the Hellacache may be killed the cycle after issuing the request (while the request is accessing
the data arrays).

The current data cache design accesses the SRAMs in a single-cycle.

The cache has a three-stage pipeline and can accept a new request every cycle. The stages do the following:

• S0: Send request address

• S1: Access SRAM

• S2: Perform way-select and format response data

The data cache is also cache coherent which is helpful even in uniprocessor configurations for allowing a host machine
or debugger to read BOOM’s memory.

3.16 Parameterization

3.16.1 General Parameters

Listing general-boom-params lists the top-level parameters that you can manipulate for a BOOM core. This is
taken from src/main/scala/common/parameters.scala.

fetchWidth: Int = 1,
decodeWidth: Int = 1,
numRobEntries: Int = 64,
issueParams: Seq[IssueParams] = Seq(
IssueParams(issueWidth=1, numEntries=16, iqType=IQT_MEM.litValue,

→˓dispatchWidth=1),
IssueParams(issueWidth=2, numEntries=16, iqType=IQT_INT.litValue,

→˓dispatchWidth=1),
IssueParams(issueWidth=1, numEntries=16, iqType=IQT_FP.litValue ,

→˓dispatchWidth=1)),
numLdqEntries: Int = 16,
numStqEntries: Int = 16,
numIntPhysRegisters: Int = 96,
numFpPhysRegisters: Int = 64,
maxBrCount: Int = 4,
numFetchBufferEntries: Int = 16,

(continues on next page)

3.15. The Memory System 43

RISCV-BOOM Documentation

(continued from previous page)

enableAgePriorityIssue: Boolean = true,
enablePrefetching: Boolean = false,
enableFastLoadUse: Boolean = true,
enableCommitMapTable: Boolean = false,
enableFastPNR: Boolean = false,
enableSFBOpt: Boolean = false,
enableGHistStallRepair: Boolean = true,
enableBTBFastRepair: Boolean = true,
useAtomicsOnlyForIO: Boolean = false,
ftq: FtqParameters = FtqParameters(),
intToFpLatency: Int = 2,
imulLatency: Int = 3,
nPerfCounters: Int = 0,
numRXQEntries: Int = 4,
numRCQEntries: Int = 8,
numDCacheBanks: Int = 1,
nPMPs: Int = 8,
enableICacheDelay: Boolean = false,

/* branch prediction */
enableBranchPrediction: Boolean = true,
branchPredictor: Function2[BranchPredictionBankResponse, Parameters,

→˓Tuple2[Seq[BranchPredictorBank], BranchPredictionBankResponse]] = ((resp_in:
→˓BranchPredictionBankResponse, p: Parameters) => (Nil, resp_in)),
globalHistoryLength: Int = 64,
localHistoryLength: Int = 32,
localHistoryNSets: Int = 128,
bpdMaxMetaLength: Int = 120,
numRasEntries: Int = 32,
enableRasTopRepair: Boolean = true,

/* more stuff */
useCompressed: Boolean = true,
useFetchMonitor: Boolean = true,
bootFreqHz: BigInt = 0,
fpu: Option[FPUParams] = Some(FPUParams(sfmaLatency=4, dfmaLatency=4)),
usingFPU: Boolean = true,
haveBasicCounters: Boolean = true,
misaWritable: Boolean = false,
mtvecInit: Option[BigInt] = Some(BigInt(0)),
mtvecWritable: Boolean = true,
haveCFlush: Boolean = false,
mulDiv: Option[freechips.rocketchip.rocket.MulDivParams] =

→˓Some(MulDivParams(divEarlyOut=true)),
nBreakpoints: Int = 0, // TODO Fix with better frontend breakpoint unit
nL2TLBEntries: Int = 512,
nL2TLBWays: Int = 1,
nLocalInterrupts: Int = 0,
useNMI: Boolean = false,
useAtomics: Boolean = true,
useDebug: Boolean = true,
useUser: Boolean = true,
useSupervisor: Boolean = false,
useVM: Boolean = true,
useSCIE: Boolean = false,
useRVE: Boolean = false,
useBPWatch: Boolean = false,

(continues on next page)

44 Chapter 3. Table of Contents

RISCV-BOOM Documentation

(continued from previous page)

clockGate: Boolean = false,
mcontextWidth: Int = 0,
scontextWidth: Int = 0,

/* debug stuff */
enableCommitLogPrintf: Boolean = false,
enableBranchPrintf: Boolean = false,
enableMemtracePrintf: Boolean = false

3.16.2 Sample Configurations

Sample configurations of the core and the parameters used can be seen in src/main/scala/common/
config-mixins.scala. The following code shows an example of the “Large BOOM Configuration”.

/**
* 3-wide BOOM. Try to match the Cortex-A15.

*/
class WithNLargeBooms(n: Int = 1, overrideIdOffset: Option[Int] = None) extends
→˓Config(
new WithTAGELBPD ++ // Default to TAGE-L BPD
new Config((site, here, up) => {
case TilesLocated(InSubsystem) => {

val prev = up(TilesLocated(InSubsystem), site)
val idOffset = overrideIdOffset.getOrElse(prev.size)
(0 until n).map { i =>

BoomTileAttachParams(
tileParams = BoomTileParams(

core = BoomCoreParams(
fetchWidth = 8,
decodeWidth = 3,
numRobEntries = 96,
issueParams = Seq(
IssueParams(issueWidth=1, numEntries=16, iqType=IQT_MEM.litValue,

→˓dispatchWidth=3),
IssueParams(issueWidth=3, numEntries=32, iqType=IQT_INT.litValue,

→˓dispatchWidth=3),
IssueParams(issueWidth=1, numEntries=24, iqType=IQT_FP.litValue ,

→˓dispatchWidth=3)),
numIntPhysRegisters = 100,
numFpPhysRegisters = 96,
numLdqEntries = 24,
numStqEntries = 24,
maxBrCount = 16,
numFetchBufferEntries = 24,
ftq = FtqParameters(nEntries=32),
fpu = Some(freechips.rocketchip.tile.FPUParams(sfmaLatency=4,

→˓dfmaLatency=4, divSqrt=true))
),
dcache = Some(
DCacheParams(rowBits = site(SystemBusKey).beatBits, nSets=64, nWays=8,

→˓nMSHRs=4, nTLBWays=16)
),
icache = Some(
ICacheParams(rowBits = site(SystemBusKey).beatBits, nSets=64, nWays=8,

→˓fetchBytes=4*4)
(continues on next page)

3.16. Parameterization 45

RISCV-BOOM Documentation

(continued from previous page)

),
hartId = i + idOffset

),
crossingParams = RocketCrossingParams()

)
} ++ prev

}
case SystemBusKey => up(SystemBusKey, site).copy(beatBytes = 16)
case XLen => 64

})
)

3.16.3 Other Parameters

You can also manipulate other parameters such as Rocket Chip SoC parameters, Uncore, BTB, BIM, BPU, and more
when configuring the SoC! However, this is done in the top-level project that adds BOOM so this will not be discussed
here.

3.17 The BOOM Development Ecosystem

3.17.1 The BOOM Repository

The BOOM repository holds the source code to the BOOM core; it is not a full processor and thus is NOT A SELF-
RUNNING repository. To instantiate a BOOM core, you must use a top-level project to integrate the core into an SoC.
For this purpose you can use the Chipyard Template.

The BOOM core source code can be found in src/main/scala.

The core code structure is shown below:

• src/main/scala/

– bpu/ - branch predictor unit

– common/ - configs fragments, constants, bundles, tile definitions

– exu/ - execute/core unit

– ifu/ - instruction fetch unit

– lsu/ - load/store/memory unit

– util/ - utilities

3.17.2 Scala, Chisel, Generators, Configs, Oh My!

Working with BOOM has a large learning curve for those people new to Chisel and the BOOM ecosystem. To be
productive, it takes time to learn about the micro-architecture, Rocket chip components, Chisel (maybe Firrtl), Scala,
and the build system. Luckily, the micro-architecture is detailed in this documentation and some of the other topics
(Chisel, Firrtl, Scala) are discussed in their respective websites. Instead of focusing solely on those topics, this section
hopes to show how they all fit together by giving a high level of the entire build process. Put in more specific terms:
How do you get from Scala/Chisel to Verilog?1

1 This section describes the current build process that is used in Chipyard.

46 Chapter 3. Table of Contents

https://github.com/ucb-bar/chipyard
https://github.com/ucb-bar/chipyard

RISCV-BOOM Documentation

Recap on Coding in Scala/Chisel

When making changes to BOOM, you are working in Scala/Chisel code. Chisel is the language embedded inside
of Scala to create RTL. One way to view Scala/Chisel is that Chisel is a set of libraries that are used in Scala that
help hardware designers create highly parameterizable RTL. For example, if you want to make a hardware queue,
you would use something like Chisel’s chisel3.util.Queue to make a queue. However, if you want to change
the amount of entries of the queue based on some variable, that would be Scala code. Another way to think of the
distinction between the two languages is that Chisel code will make a circuit in hardware while Scala code will change
the parameters of the circuit that Chisel will create. A simple example is shown below in Listing 3.2.

Listing 3.2: Scala and Chisel Code

var Q_DEPTH = 1 // Scala variable
if (WANT_HUGE_QUEUE == true) {

Q_DEPTH = 123456789 // Big number!
}
else {

Q_DEPTH = 1 // Small number.
}

// Create a queue through Chisel with the parameter specified by a Scala variable
val queue = Module(new chisel3.util.Queue(HardwareDataType, Q_DEPTH))

Generating a BOOM System

The word “generator” used in many Chisel projects refers to a program that takes in a Chisel Module and a Config-
uration and returns a circuit based on those parameters. The generator for BOOM and Rocket SoC’s can be found
in Chipyard under the Generator.scala file. The Chisel Module used in the generator is normally the top-level
Chisel Module class that you (the developer) want to make a circuit of. The Configuration is just a set of Scala vari-
ables used to configure the parameters of the passed in Chisel Module. In BOOM’s case, the top-level Module would
be something like the BoomRocketSystem found in src/main/scala/system/BoomRocketSystem.scala
and a Configuration like MediumBoomConfig found in src/main/scala/common/configs.scala.2 In this
case, the parameters specified in MediumBoomConfig would set the necessary Scala variables needed throughout
the ExampleBoomSystem Module. Once the Module and Configuration is passed into the generator, they will be
combined to form a piece of RTL representing the circuit given by the Module parameterized by the Configuration.

Compilation and Elaboration

Since the generator is just a Scala program, all Scala/Chisel sources must be built. This is the compilation step. If
Chisel is thought as a library within Scala, then these classes being built are just Scala classes which call Chisel
functions. Thus, any errors that you get in compiling the Scala/Chisel files are errors that you have violated the typing
system, messed up syntax, or more. After the compilation is complete, elaboration begins. The generator starts
elaboration using the Module and Configuration passed to it. This is where the Chisel “library functions” are called
with the parameters given and Chisel tries to construct a circuit based on the Chisel code. If a runtime error happens
here, Chisel is stating that it cannot “build” your circuit due to “violations” between your code and the Chisel “library”.
However, if that passes, the output of the generator gives you an RTL file!

Quickly on Firrtl

Up until this point, I have been saying that your generator gives you a RTL file. However. . . this is not true. Instead the
generator emits Firrtl, an intermediate representation of your circuit. Without going into too much detail, this Firrtl

2 This is not exactly true since to be able to run BOOM in simulations we wrap the BoomRocketSystem in a TestHarness found in Chipyard.

3.17. The BOOM Development Ecosystem 47

https://github.com/freechipsproject/firrtl

RISCV-BOOM Documentation

is consumed by a Firrtl compiler (another Scala program) which passes the circuit through a series of circuit-level
transformations. An example of a Firrtl pass (transformation) is one that optimizes out unused signals. Once the
transformations are done, a Verilog file is emitted and the build process is done!

Big Picture

Now that the flow of ecosystem has been briefly explained here is a quick recap.

1. You write code in Scala + Chisel (where Chisel can be seen as a library that Scala uses)

2. You compile the Scala + Chisel into classes to be used by the generator

3. Deal with compile errors (related to syntax, type system violations, or more)

4. You run the generator with the Module and Configuration for your circuit to get the Firrtl output file

5. Deal with runtime errors (Chisel elaboration errors, which may occur from violating Chisel’s expectations)

6. You run the Firrtl compiler on the output Firrtl file to get a Verilog output file

7. Deal with runtime errors (Firrtl compile errors, which occur from compiler passes that perform checks e.g. for
uninitialized wires)

8. Done. A Verilog file was created!!!

3.17.3 More Resources

If you would like more detail on top-level integration, how accelerators work in the Rocket Chip system, and much
more please visit the Chipyard Documentation.

3.18 Debugging

3.18.1 FireSim Debugging

In addition to Verilator and VCS software simulation testing, one can use the FireSim tool to debug faster using an
FPGA. This tools comes out of the UC Berkeley Architecture Research group and is still a work in progress. You can
find the documentation and website at https://fires.im/.

3.18.2 Chicken Bits

BOOM supports a chicken-bit to delay all instructions from issue until the pipeline clears. This effectively turns
BOOM into a unpipelined in-order core. The chicken bit is controlled by the third bit of the CSR at 0x7c1. Writing
this CSR with csrwi 0x7c1, 0x8 will turn off all out-of-orderiness in the core. High-performance can be re-enabled
with csrwi 0x7c1, 0x0.

3.19 Micro-architectural Event Tracking

Version 1.9.1 of the RISC-V Privileged Architecture adds support for Hardware Performance Monitor (HPM) coun-
ters.1 The HPM support allows a nearly infinite number of micro-architectural events (called Hardware Performance

1 Future efforts may add some counters into a memory-mapped access region. This will open up the ability to track events that, for example,
may not be tied to any particular core (like last-level cache misses).

48 Chapter 3. Table of Contents

https://chipyard.readthedocs.io/en/latest/
https://fires.im/

RISCV-BOOM Documentation

Events (HPEs)) to be multiplexed onto up to multiple physical counters (called Hardware Performance Counters
(HPCs)).

3.19.1 Setup HPM events to track

The available HPE’s are split into event sets and events. Event sets are groupings of similar microarchitectural events
(branch prediction events, memory events, etc). To access an HPE you must choose the correct event set and event bit
and write to the proper HPC register for that event. An example of event set numbers and the event bit for a particular
event is given below.

Event Set # Event Bit Description
1 1 I$ Blocked
1 2 NOP
1 4 Control Flow Target Mispredict

To access an HPC, you must first set up the privilege access level of the particular HPC using mcounteren and
scounteren. Afterwards, you write to the particular HPC register to setup which event(s) you want to track. Bits
[7:0] of the HPC register correspond to the event set while bits [?:8] correspond to the event bitmask. Note that the
bitmask can be a singular event or multiple events.

Listing 3.3: Enable Hardware Performance Monitor Counters

write_csr(mcounteren, -1); // Enable supervisor use of all perf counters
write_csr(scounteren, -1); // Enable user use of all perf counters

write_csr(mhpmevent3, 0x101); // read I$ Blocked event
write_csr(mhpmevent4, 0x801); // read Ctrl Flow Target Mispred. event
...

3.19.2 Reading HPM counters in software

The Code Example Listing 3.4 demonstrates how to read the value of any HPC from software. Note that HPCs need
to be “zero’d” out by first reading the value at the beginning of the program, then reading the counter again the end,
and then subtracting the initial value from the second read. However, this only applies to the HPC’s not cycle,
instret, and time.

Listing 3.4: Read CSR Register

#define read_csr_safe(reg) ({ register long __tmp asm("a0"); \
asm volatile ("csrr %0, " #reg : "=r"(__tmp)); \
__tmp; })

// read cycle and instruction counts in user mode
uint64_t csr_cycle = read_csr_safe(cycle);
uint64_t csr_instr = read_csr_safe(instret);

// read initial value of HPMC's in user mode
uint64_t start_hpmc3 = read_csr_safe(hpmcounter3);
...
uint64_t start_hpmc31 = read_csr_safe(hpmcounter31);

// program to monitor

(continues on next page)

3.19. Micro-architectural Event Tracking 49

RISCV-BOOM Documentation

(continued from previous page)

// read final value of HPMC's and substract initial in user mode
printf("Value of Event (zero'd): %d\n", read_csr_safe(hpmcounter3) - start_hpmc3);

3.19.3 Adding your own HPE

To add your own HPE, you modify the event set and particular event in src/main/scala/exu/core.scala.
Note that the 1st item in the Seq corresponds to the first bit in the event set.

3.19.4 External Resources

Information in this section was adapted from https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf which details more
about HPE/C’s from RocketChip’s perspective. Note: The HPE’s supported by Rocket and BOOM differ, but the
mechanism to access them is the same!

3.20 Verification

This chapter covers the current recommended techniques for verifying BOOM. Although not provided as part of the
BOOM or Rocket Chip repositories, it is also recommended that BOOM be tested on “hello-world + riscv-pk” and the
RISC-V port of Linux to properly stress the processor.

3.20.1 RISC-V Tests

A basic set of functional tests and micro-benchmarks can be found at (https://github.com/riscv/riscv-tests). These
are invoked by the make run targets in the verilator and vcs directories located in the Chipyard template
repository.

3.20.2 RISC-V Torture Tester

Berkeley’s riscv-torture tool is used to stress the BOOM pipeline, find bugs, and provide small code snippets that can
be used to debug the processor. Torture can be found at (https://github.com/ucb-bar/riscv-torture).

3.20.3 Continuous Integration (CI)

The CircleCI Continuous Integration (CI) tool is used to check pull requests and the master branch of BOOM. All
files associated with it can be found in two directories. Firstly, the configuration file used to run CI is located at .
circleci/config.yml. This specifies the current tests and builds that are run using which BOOM configurations.
Additionally, the DockerFile used to build the CI docker images resides in .circleci/images. Finally, all scripts
that are used during the CI run are located at .circleci/. Note that even though BOOM template is cloned during
the CI process, the BOOM repository specifies which version of Rocket Chip to use (which in turn determines the
proper version of riscv-tools).

3.21 Physical Realization

This chapter provides information useful for physically realizing the BOOM processor. Although BOOM VLSI work
is very preliminary, it has been synthesized at 1 GHz on a high-end mobile 28 nm process. Unfortunately, while VLSI

50 Chapter 3. Table of Contents

https://static.dev.sifive.com/U54-MC-RVCoreIP.pdf
https://github.com/riscv/riscv-tests
https://github.com/ucb-bar/riscv-torture

RISCV-BOOM Documentation

flows are difficult to share or make portable (and encumbered with proprietary libraries and tools), an enterprising
individual may want to visit the https://github.com/ucb-bar/plsi portable “Palmer’s VLSI Scripts” repository which
describes one way to push BOOM through a VLSI flow.

3.21.1 Register Retiming

Many VLSI tools require the designer to manually specify which modules need to be analyzed for retiming.

In BOOM, the floating point units and the pipelined integer multiply unit are described combinationally and then
padded to the requested latency with registers. In order to meet the desired clock frequency, the floating point units
and the pipelined integer multiply unit must be register-retimed.

val mul_result = lhs.toSInt * rhs.toSInt

val mul_output_mux = MuxCase(
UInt(0, 64), Array(

FN(DW_64, FN_MUL) -> mul_result(63,0),
FN(DW_64, FN_MULH) -> mul_result(127,64),
FN(DW_64, FN_MULHU) -> mul_result(127,64),
FN(DW_64, FN_MULHSU) -> mul_result(127,64),
FN(DW_32, FN_MUL) -> Cat(Fill(32, mul_result(31)), mul_result(31,0)),
FN(DW_32, FN_MULH) -> Cat(Fill(32, mul_result(63)), mul_result(63,32)),
FN(DW_32, FN_MULHU) -> Cat(Fill(32, mul_result(63)), mul_result(63,32)),
FN(DW_32, FN_MULHSU) -> Cat(Fill(32, mul_result(63)), mul_result(63,32))

))

io.out := ShiftRegister(mul_output_mux, imul_stages, io.valid)

3.21.2 Pipelining Configuration Options

Although BOOM does not provide high-level configurable-latency pipeline stages, BOOM does provide a few config-
uration options to help the implementor trade off CPI performance for cycle-time.

EnableFetchBufferFlowThrough

The Front-end fetches instructions and places them into a Fetch Buffer. The Back-end pulls instructions out of the
Fetch Buffer and then decodes, renames, and dispatches the instructions into the Issue Queue. This Fetch Buffer can
be optionally set to be a flow-through queue – instructions enqueued into the buffer can be immediately dequeued on
the other side on the same clock cycle. Turning this option off forces all instructions to spend at least one cycle in the
queue but decreases the critical path between instruction fetch and dispatch.

EnableBrResolutionRegister

The branch unit resolves branches, detects mispredictions, fans out the branch kill signal to all inflight Micro-Ops
(UOPs), redirects the PC select stage to begin fetching down the correct path, and sends snapshot information to the
branch predictor to reset its state properly so it can begin predicting down the correct path. Turning this option on
delays the branch resolution by a cycle. In particular, this adds a cycle to the branch misprediction penalty (which is
hopefully a rare event).

3.21. Physical Realization 51

https://github.com/ucb-bar/plsi

RISCV-BOOM Documentation

Functional Unit Latencies

The latencies of the pipelined floating point units and the pipelined integer multiplier unit can be modified. Currently,
all floating point unit latencies are set to the latency of the longest floating point unit (i.e., the DFMA unit). This
can be changed by setting the dfmaLatency in the FPUConfig class. Likewise, the integer multiplier is also set to the
dfmaLatency.1

3.22 Future Work

This chapter lays out some of the potential future directions that BOOM can be taken. To help facilitate such work,
the preliminary design sketches are described below.

3.22.1 The BOOM Custom Co-processor Interface (BOCC)

Some accelerators may wish to take advantage of speculative instructions (or even out-of-order issue) to begin execut-
ing instructions earlier to maximize de-coupling. Speculation can be handled by either by epoch tags (if in-order issue
is maintained to the co-processor) or by allocating mask bits (to allow for fine-grain killing of instructions).

3.22.2 The Vector (“V”) ISA Extension

Implementing the Vector Extension in BOOM would open up the ability to leverage performance (or energy-efficiency)
improvements in running data-level parallel codes (DLP). While it would be relatively easy to add vector arithmetic
operations to BOOM, the significant challenges lie in the vector load/store unit.

Perhaps unexpectedly, a simple but very efficient implementation could be very small. The smallest possible vector
register file (four 64-bit elements per vector) weighs in at 1024 bytes. A reasonable out-of-order implementation could
support 8 elements per vector and 16 inflight vector registers (for a total of 48 physical vector registers) which would
only be 3 kilobytes. Following the temporal vector design of the Cray I, the vector unit can re-use the expensive scalar
functional units by trading off space for time. This also opens up the vector register file to being implemented using 1
read/1 write ports, fitting it in very area-efficient SRAMs. As a point of comparison, one of the most expensive parts
of a synthesizable BOOM is its flip-flop based scalar register file. While a 128-register scalar register file comes in at
1024 bytes, it must be highly ported to fully exploit scalar instruction-level parallelism (a three-issue BOOM with one
FMA unit is 7 read ports and 3 write ports).

3.23 Frequently Asked Questions

For questions regarding the BOOM core, please refer to our GitHub page issues section located at https://github.com/
riscv-boom/riscv-boom/issues.

3.23.1 Help! BOOM isn’t working

First verify the software is not an issue. Run spike first:

Also verify the riscv-tools you built is the one pointed to by Chipyard. Otherwise a version mismatch can easily occur!

1 The reason for this is that the imul unit is most likely sharing a write port with the DFMA unit and so must be padded out to the same length.
However, this isn’t fundamental and there’s no reason an imul unit not sharing a write port with the FPUs should be constrained to their latencies.

52 Chapter 3. Table of Contents

https://github.com/riscv-boom/riscv-boom/issues
https://github.com/riscv-boom/riscv-boom/issues

RISCV-BOOM Documentation

3.23.2 Master branch is broken! How do I get a working BOOM?

The Chipyard SoC super-repo should always be pointing to a working BOOM/rocket-chip/riscv-tools combination.
The master branch of riscv-boom may run ahead though. Ideally, master should never be broken, but it may be
somewhat unstable as development continues. For more stability, please use one of the tagged releases.

3.24 Terminology

This terminology page contains terms/concepts that are unique to the BOOM core that may/may not match with other
out-of-order terminology.

Fetch Packet A bundle returned by the Front-end which contains some set of consecutive instructions with a mask
denoting which instructions are valid, amongst other meta-data related to instruction fetch and branch prediction.
The Fetch PC will point to the first valid instruction in the Fetch Packet, as it is the PC used by the Front End to
fetch the Fetch Packet.

Fetch PC The PC corresponding to the head of a Fetch Packet instruction group.

Fetch Buffer Buffer that holds Fetch Packets that are sent to the Back-end.

TAGE Predictor A high performance branch predictor. For more information read the paper “A case for (partially)
tagged geometric history length predictors”.

GShare Predictor A simpler branch predictor that uses a global history to index into a set of counters.

Bi-Modal Table (BIM) A counter table.

Micro-Op (UOP) Element sent throughout the pipeline holding information about the type of Micro-Op, its PC,
pointers to the FTQ, ROB, LDQ, STQs, and more.

Front-end The Fetch and Branch Prediction portions of the pipeline that fetch instructions from the i-cache.

Back-end The stages starting from Dispatch to Writeback. Here instructions are executed, dependencies resolved,
branches resolved, etc.

Fetch Boundary The bytes at the end of a i-cache response that might be half of an instruction used in RVC.

Fetch Target Queue (FTQ) Queue used to track the branch prediction information for inflight Micro-Ops. This is
dequeued once all instructions in its Fetch Packet entry are committed.

Next-Line Predictor (NLP) Consists of a Branch Target Buffer (BTB), Return Address Stack (RAS) and Bi-Modal
Table (BIM). This is used to make quick predictions to redirect the Front-end

Backing predictor (BPD) Slower but more complicated predictor used to track longer histories. In BOOM you can
have multiple different types of a Backing predictor (TAGE, GShare. . .).

Branch Target Buffer (BTB) Tagged entry table in which a PC is used to find a matching target. Thus, if there is a
hit, the specified target is used to redirect the pipeline.

Return Address Stack (RAS) Stack used to track function calls. It is pushed with a PC on a JAL or JALR and
popped during a RET.

Fetch Width The amount of instructions retrieved from the i-cache from the Front-end of the processor.

Global History Register (GHR) A register holding the last N taken/not taken results of branches in the processor.
However, in BOOM, each bit does not correspond to a bit of history. Instead this is a hashed history.

Rename Snapshots Saved state used to reset the pipeline to a correct state after a misspeculation or other redirecting
event.

Branch Unit The functional unit that resolves a branch in the Execute Pipeline.

3.24. Terminology 53

https://github.com/ucb-bar/chipyard
https://github.com/riscv-boom/riscv-boom/releases

RISCV-BOOM Documentation

Branch Rename Snapshot Metadata and prediction snapshots that are used to fix the branch predictor after mispre-
dictions.

Execution Unit A module that wraps multiple Functional Units within it. It is attached to one issue port only.

Functional Unit A specific hardware module to compute some function (i.e. ALU, FPU, etc).

54 Chapter 3. Table of Contents

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

55

RISCV-BOOM Documentation

56 Chapter 4. Indices and tables

Index

B
Back-end, 53
Backing predictor (BPD), 53
Bi-Modal Table (BIM), 53
Branch Rename Snapshot, 54
Branch Target Buffer (BTB), 53
Branch Unit, 53

E
Execution Unit, 54

F
Fetch Boundary, 53
Fetch Buffer, 53
Fetch Packet, 53
Fetch PC, 53
Fetch Target Queue (FTQ), 53
Fetch Width, 53
Front-end, 53
Functional Unit, 54

G
Global History Register (GHR), 53
GShare Predictor, 53

M
Micro-Op (UOP), 53

N
Next-Line Predictor (NLP), 53

R
Rename Snapshots, 53
Return Address Stack (RAS), 53

T
TAGE Predictor, 53

57

	Useful Links
	Quick-start
	Table of Contents
	The Berkeley Out-of-Order Machine (BOOM)
	The BOOM Pipeline
	The Chisel Hardware Construction Language
	The RISC-V ISA
	Rocket Chip SoC Generator
	Instruction Fetch
	Branch Prediction
	The Decode Stage
	The Rename Stage
	The Reorder Buffer (ROB) and the Dispatch Stage
	The Issue Unit
	The Register Files and Bypass Network
	The Execute Pipeline
	The Load/Store Unit (LSU)
	The Memory System
	Parameterization
	The BOOM Development Ecosystem
	Debugging
	Micro-architectural Event Tracking
	Verification
	Physical Realization
	Future Work
	Frequently Asked Questions
	Terminology

	Indices and tables
	Index

